Chapter 3: Processes
| |

B e

(slides selected/reordered/modified by R. Doemer, 01/06/11)
Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

/f"”"j
r & Chapter 3: Processes

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication

(slide modified by R. Doemer, 04/06/10) .. I
Operating System Concepts — 81" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

P
& Process Concept

B An operating system executes a variety of programs:

e Batch system — jobs

e Time-shared systems — user programs or tasks
B Textbook uses the terms job and process almost interchangeably
® Process:

® a program in execution

® process execution must progress in sequential fashion
m A process includes:

e program counter

e stack

e (data section

(slide modified by R. Doemer, 04/02/10)

)

Operating System Concepts — 8" Edition 3.3 Silberschatz, Galvin and Gagne ©2009
=
{ camd
& ¥ .
rd Process in Memory
max
stack

heap

data

text

Operating System Concepts — 81" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

=

(=
S¢ '
rdh Process State
m As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution
Operating System Concepts — 8" Edition 35 Silberschatz, Galvin and Gagne ©20‘O‘9’
b;_
(et » .
r) Diagram of Process State

admitted interrupt exit terminated

scheduler dispatch

1/0O or event completion I/O or event wait

Operating System Concepts — 81" Edition 3.6 Silberschatz, Galvin and Gagne ©2009

=

A’.‘-"'""‘j.
“%7/ Process Control Block (PCB)

Information associated with each process
B Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

1/0 status information

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

=
.

“$7” Process Control Block (PCB)

process state
process number

program counter

registers

memory limits

list of open files

2
Operating System Concepts — 81" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

Lam) .
r.al Context Switch

m When CPU switches to another process,
the system must save the state of the old process and
load the saved state for the new process via a context switch

Context of a process is represented in the PCB

Context-switch time is overhead;
the system does no useful work while switching

m Context-switch time is dependent on hardware support

N =
7 (

(slide modified by R. Doemer, 04/02/10)
Operating System Concepts — 8" Edition 3.9 Silberschatz, Galvin and Gagne ©2009

B

=

""j{:’_,’ CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing ﬂ
TH save state into PCB,

reload state from PCB,

ridle interrupt or system call executing

save state into PCB,

J reload state from PCB,
executing y

Operating System Concepts — 81" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

idle

idle

A B

o
‘»’:’wp Y

Process Scheduling Queues

Job queue — set of all processes in the system

Ready queue — set of all processes residing in main memory,
ready and waiting to execute

Device queues — set of processes waiting for an I/O device
Processes migrate among the various queues

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.11

AT

ol N
&'"‘}"’_.’ Ready Queue And Various I/O Device Queues

queue header PCB, PCB,
ready head —=
queue tail N registers registers
0 O
. .
. .
mag head ——=
tape = -
unit 0 ail =
{‘nag head —=
u:}ﬁe A — PCB, PCB,, PCB,
—
disk head 4
unit 0 tail 4
PCB.
terminal head —
unit 0 tail 11—
.
.
Operating System Concepts — 81" Edition 3.12 Silberschatz, Galvin and Gagne ©2009

=

“%7/ Representation of Process Scheduling

: ready queue » CPU i

@- /O queue € I/O request [«
time slice
expired

interrupt wait foran [
occurs interrupt

child fork a
executes child

= |

28

Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009

r. & Process Creation

B Parent process create child processes,
which, in turn create other processes, forming a tree of processes

m Generally, process identified and managed via a process identifier (pid)

m Resource sharing options:
e Parent and children share all resources
e Children share subset of parent’s resources
e Parent and child share no resources

m Execution options:
e Parent and children execute concurrently
e Parent waits until children terminate

(slide modified by R. Doemer, 04/02/10) ./ i
Operating System Concepts — 81" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

<57 Process Creation (Cont)

m Address space options:
e Child is a duplicate of parent
e Child has a program loaded into it

m UNIX example

e fork system call creates new process
(as an almost identical copy of the parent)

e exec system call is used after a fork
to replace the process’ memory space with a new program (from disk)

e wait system call allows parent to wait for child completion

(slide modified by R. Doemer, 04/02/10) ./ “Y‘

Operating System Concepts — 8" Edition 3.15 Silberschatz, Galvin and Gagne ©2009
=
{)
& ¥ . . .
rd Process Creation in Unix
parent , Viak resumes

(slide modified by R. Doemer, 04/02/10) ./ b

2
Operating System Concepts — 81" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

‘*—'-*’j}r,’ C Program Forking a Child Process

int mainQ)

{
pid_t pid;

/* fork another process */

pid = fork(Q);

if (pid < 0) { /7* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

else if (pid == 0) { /* child process */
execlp('/bin/l1s™, "1s", NULL);

3

else { /* parent process */
/* parent will wait for the child to complete */
wait(NULL);
printf ('Child Complete™);

return O;
- =)
. . 7 W
(slide modified by R. Doemer, 04/02/10) by
Operating System Concepts — 8" Edition 3.17 Silberschatz, Galvin and Gagne ©2009

=
v

bl g : ;
»7 A tree of processes on a typical Solaris system

telnetdaemon
pid = 7776
Csh
pid = 7778

Netscape I emacs
pid = 7785 pid = 8105

Csh
pid = 1400

— ,3"}-&
(slide modified by R. Doemer, 04/02/10) ..
Operating System Concepts — 81" Edition 3.18 Silberschatz, Galvin and Gagne ©2009

R

o -v'v-k

hr & Process Termination

B Process executes last statement (returns from main()), or
asks the operating system to delete it (exit)

e Output status from child to parent (via wait)

e Process’ resources are deallocated by operating system
m Parent may terminate execution of children processes (abort)

e Child has exceeded allocated resources

e Task assigned to child is no longer required

e If parent is exiting

» Some operating system do not allow child to continue
if its parent terminates

All children terminated - cascading termination

el =)
(slide modified by R. Doemer, 04/02/10) [%

28

Operating System Concepts — 8" Edition 3.19 Silberschatz, Galvin and Gagne ©2009

=
e

“#7/ Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

B Reasons for cooperating processes:
e Information sharing
e Computation speedup
e Modularity
e Convenience

Cooperating processes need interprocess communication (IPC)
Two models of IPC

e Shared memory

e Message passing

(slide modified by R. Doemer, 04/02/10)
Operating System Concepts — 81" Edition 3.20 Silberschatz, Galvin and Gagne ©2009

10

=

»mter-Process Communications Models

process A process A
_l1
shared o
2
process B process B 4-'
2 1
kernel E P | kernel
(a) (b)
Message Passing Shared Memory ’
= |
(slide modified by R. Doemer, 04/02/10) . ‘5‘
Operating System Concepts — 8" Edition 3.21 Silberschatz, Galvin and Gagne ©2009

Synchronization

B Message passing may be either blocking or non-blocking
m Blocking is considered synchronous

e Blocking send has the sender block until the message is
received

e Blocking receive has the receiver block until a message is
available

® Non-blocking is considered asynchronous

e Non-blocking send has the sender send the message and
continue

e Non-blocking receive has the receiver receive a valid message
or null

(slide modified by R. Doemer, 04/06/10) ..
Operating System Concepts — 81" Edition 3.22 Silberschatz, Galvin and Gagne ©2009

11

End of Chapter 3

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

12

