
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 5: CPU Scheduling

(slides selected/reordered/modified by R. Doemer, 01/11/11)

5.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 5: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Operating Systems Examples

 Algorithm Evaluation

(slide modified by R. Doemer, 01/12/11)

2

5.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Concepts

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle –
Process execution consists of a cycle of

 CPU execution and

 I/O wait

 CPU burst distribution

(slide modified by R. Doemer, 04/20/10)

5.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Alternating Sequence of CPU And I/O Bursts

3

5.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Histogram of CPU-burst Times

5.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Scheduler

 Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is non-preemptive

 All other scheduling is preemptive

(slide modified by R. Doemer, 04/20/10)

4

5.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler

 Dispatching involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program
to restart that program

 Dispatch latency

 time it takes for the dispatcher to stop one process and
start another running

(slide modified by R. Doemer, 04/20/10)

5.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Algorithm Criteria

(slide modified by R. Doemer, 01/11/11)

 CPU utilization

 keep the CPU as busy as possible

 Throughput

 number of processes that complete their execution per time unit

 Turnaround time

 amount of time to execute a particular process

 Waiting time

 amount of time a process has been waiting in the ready queue

 Response time

 amount of time it takes from when a request was submitted
until the first response is produced (not the time to output result!)

 for time-sharing environment

5

5.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

5.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect short process behind long process

P1P3P2

63 300

6

5.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst.

 Use these lengths to schedule the process with the shortest time.

 SJF is optimal

 SJF gives minimum average waiting time for a given set of processes

 However, there’s a problem:

 The difficulty is knowing the length of the next CPU request…

(slide modified by R. Doemer, 04/20/10)

5.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of SJF

Process Burst Time

P1 6

P2 8

P3 7

P4 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

(slide fixed by R. Doemer, 01/07/09)

7

5.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Estimating Length of Next CPU Burst

 Can only estimate the length!

 Note: Text book calls this estimation prediction.

 Can be done by using the length of previous CPU bursts

 using exponential averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.









 1n

th
n nt

  nnn t   1 1

(slide modified by R. Doemer, 04/21/10)

5.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn-1 + …

+(1 - )j  tn -j + …

+(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1,
each successive term has less weight than its predecessor

  nnn t   1 1

(slide modified by R. Doemer, 04/21/10)

8

5.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Scheduling

 A priority number (an integer) is associated with each process

 The CPU is allocated to the process with the highest priority
(smallest integer  highest priority)

 Preemptive

 Non-preemptive

 SJF is an example of priority scheduling
where priority is the predicted next CPU burst time

 Problem  Starvation

 low priority processes may never execute

 Solution  Aging

 as time progresses, increase the priority of the process

(slide modified by R. Doemer, 04/20/10)

5.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Round Robin (RR) Scheduling

 Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds.

 After this time has elapsed, the process is preempted and
added to the end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once.

 No process waits more than (n-1)q time units.

 Performance

 q large  RR degenerates to FCFS

 q small  q should be large with respect to context switch,
otherwise overhead is too high

(slide modified by R. Doemer, 04/20/10)

9

5.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

(slide modified by R. Doemer, 04/20/10)

5.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

 Ready queue is partitioned into separate queues

 foreground (interactive)

 background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling

 i.e., serve all from foreground then from background

 Possibility of starvation.

 Time slice

 each queue gets a certain amount of CPU time which it can
schedule amongst its processes

– i.e., 80% to foreground in RR

– 20% to background in FCFS

(slide modified by R. Doemer, 04/20/10)

10

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 5

