
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 6:
Process Synchronization

(slides selected/modified by R. Doemer, 01/12/11)

6.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 6: Process Synchronization

 Background

 The Producer-Consumer Problem

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Semaphores

 Classic Problems of Synchronization

 Monitors

 Synchronization Examples

 Pthread Synchronization

 Atomic Transactions

(slide modified by R. Doemer, 04/29/10)

2

6.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Concurrent execution of processes or threads
creates situations of non-determinism!

 CPU scheduling by operating system often (!)
yields non-deterministic order of execution
of concurrent program instructions

 e.g. thread may be preempted at any time (!)

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms
to ensure the orderly execution of cooperating processes

(slide modified by R. Doemer, 04/22/10)

6.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Example

 Paradigm for cooperating processes

 Producer process produces information that is consumed by a
consumer process

 Buffered communication

 Bounded-buffer assumes that there is a fixed buffer size

 Both consumer and producer access shared data

(slide inserted from chapter 3 and modified by R. Doemer, 01/12/11)

3

6.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Example

 Bounded buffer implementation

 Data in shared memory

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE]; /* circular buffer */

int in = 0; /* index of next free position */

int out = 0; /* index of first full position */

int counter = 0; /* number of items in buffer */

(slide modified by R. Doemer, 01/12/11)

6.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Example

 Producer implementation

 Produce an item, wait for buffer space, store in buffer

item nextProduced;

while (true) {

/* produce an item and put in nextProduced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

(slide modified by R. Doemer, 01/12/11)

4

6.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Example

 Consumer implementation

 Wait for an item available, load it from buffer, consume it

item nextConsumed;

while (true) {

while (counter == 0)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in nextConsumed */

}

(slide modified by R. Doemer, 01/12/11)

6.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Example

 Discussion on Implementation
 Data in shared memory

buffer[], in, out, counter

 Busy waiting in both producer and consumer

Empty loops

 Is this a valid / safe implementation?

Variable in only modified by producer

Variable out only modified by consumer

Variable counter is modified by both consumer and producer!
=> Race Condition!
(see next slide)

(slide modified by R. Doemer, 01/12/11)

5

6.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Implementation is not safe!

 A race condition exists: Critical Section Problem!
counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

counter-- could be implemented as
register2 = counter
register2 = register2 - 1
counter = register2

Consider this execution interleaving with counter = 5 initially:
T0: producer executes register1 = counter {register1 = 5}
T1: producer executes register1 = register1 + 1 {register1 = 6}
T2: consumer executes register2 = counter {register2 = 5}
T3: consumer executes register2 = register2 - 1 {register2 = 4}
T4: producer executes counter = register1 {counter = 6}
T5: consumer executes counter = register2 {counter = 4}

(slide modified by R. Doemer, 01/12/11)

Producer-Consumer Example

6.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Problem

 Critical section

 Segment of code where multiple processes manipulate shared data

 Mutual exclusion

 While one process is executing in its critical section,
no other process is to be allowed to execute in its critical section

 Processes must ask for permission to enter critical section

 Structure of a critical section for a typical process

(slide added by R. Doemer, 04/27/10)

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

6

6.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solution to Critical-Section Problem

Three requirements:

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other process can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,
then the selection of the processes that will enter the critical section next
cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section and
before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

(slide modified by R. Doemer, 04/27/10)

6.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hardware Solution Using Locks

 General solution requires a simple tool: Lock

 Race conditions can be prevented by locks
which protect critical sections

 Critical section solution using locks:

(slide modified by R. Doemer, 04/27/10)

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

7

6.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization Hardware

 Many systems provide hardware support for critical section code

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptable

 Either test memory word and set value: TestAndSet

 Or swap contents of two memory words: Swap

(slide modified by R. Doemer, 01/12/11)

6.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

TestAndSet Instruction

 Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

(slide fixed by R. Doemer, 01/07/09)

8

6.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Solution using TestAndSet

 Shared boolean variable lock indicates
whether or not someone is in the critical section

 Solution:

boolean lock = FALSE;

do {

while (TestAndSet (&lock))

; // do nothing

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

(slide modified by R. Doemer, 04/27/10)

6.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphores

 General synchronization tool that does not require busy waiting

 Semaphore

 Integer variable S

 Two atomic operations: wait() and signal()

 Originally called P() and V()

 Less complicated than previous schemes

 Definition of a Semaphore S (using busy waiting aka. spinlock):

 wait (S) {

while (S <= 0)

; // no-op

S--;

}

 signal (S) {

S++;

}

(slide modified by R. Doemer, 04/28/10)

9

6.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Binary Semaphore

 Integer value can range only between 0 and 1;
can be simpler to implement

 Also known as mutex lock or simply lock

 Provides mutual exclusion

Semaphore mutex(1); // initialized to 1

do {

wait (mutex);

// critical Section

signal (mutex);

// remainder section

} while (TRUE);

(slide modified by R. Doemer, 04/28/10)

6.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Counting Semaphore

 Integer value can range over an unrestricted domain

 Integer value typically represents number of available resources

 Could be implemented as a binary semaphore (left as exercise!)

 Can be used to control access to N instances of shared resources

Semaphore S(N); // initialized to N available resources

AllocateResource() {

wait (S);

}

ReleaseResource() {

signal (S);

}

(slide modified by R. Doemer, 04/28/10)

10

6.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Signaling Semaphore

 Integer value initialized to 0

 Integer value represents a flag for inter-process signaling

 Can be used to let a process Pi wait for another concurrent process Pj

 Statements1() of Pj will be executed before Statements2() of Pi

Semaphore S(0); // initialized to 0

Process Pi: wait (S);

Statements2();

…

Process Pj: Statements1();

signal (S);

…

(slide modified by R. Doemer, 04/29/10)

6.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Programmer’s problems with semaphores
 Frequent incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Frequent omitting

 of wait (S)

 or signal (S)

 or both!

 Monitors offer a solution (in the programming language!)
that relieves the programmer of the above problems

 Basically, the compiler automatically
inserts the mutex and its handling!

(slide modified by R. Doemer, 04/30/10)

11

6.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Monitor

 A high-level abstraction that provides
a convenient and effective mechanism for process synchronization

 Abstract Data Type (ADT)

 Only one process may be active within the monitor at any time

 Shared variables can only be accessed through local procedures

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { … }

…

procedure Pn (…) { … }

initialization(…) { … }

}
(slide modified by R. Doemer, 04/30/10)

6.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Schematic View of a Monitor

(slide modified by R. Doemer, 04/29/10)

12

6.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

 Monitor construct defined so far is not yet powerful enough
to solve general synchronization problems

 Condition Variables are needed in the monitor
to pass control from one process to another

 condition x;

 Two operations exist on a condition variable:

 x.wait()

 a process that invokes the operation is suspended

 in turn, another process may enter the monitor

 x.signal()

 resumes one of the processes that invoked x.wait()

 if no process is waiting, signaling has no effect

 Note: Many implementations also offer x.broadcast()
which will allow all waiting processes to resume (one after another)

(slide modified by R. Doemer, 04/30/10)

6.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

(slide modified by R. Doemer, 04/29/10)

 Schematic View of a Monitor with Condition Variables

13

6.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

 Example:

 Process Q suspends in monitor on condition x

 Q: x.wait ()

 Process P enters monitor and signals condition x

 P: x.signal ()

 Now, both processes can conceptually continue their execution.

 However, only one may be active in the monitor at any time!

 Choice between two possibilities:

1. P waits until Q leaves the monitor (or waits for another condition)

– Called “signal and wait” (aka. “Hoare-style”)

2. Q waits until P leaves the monitor (or waits for another condition)

– Called “signal and continue” (aka. “Mesa-style”)

– This is implemented by Pthreads and Nachos condition variables!

(slide modified by R. Doemer, 04/30/10)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 6

