Chapter 7. Deadlocks

e ¥ e

(slides selected/modified by R. Doemer, 01/12/11)

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009
=
(S
"2 Chapter 7: Deadlock
» apter /. beadloCKS

The Deadlock Problem

System Model

Deadlock Characterization
Methods for Handling Deadlocks
Deadlock Prevention

(slide modified by R. Doemer, 05/13/10) ..
Operating System Concepts — 81" Edition 7.2 Silberschatz, Galvin and Gagne ©2009

a0

2 The Deadlock Problem

m A setof blocked processes, each holding a resource and
waiting to acquire a resource held by another process in the set

m Application Example

e System has 2 disk drives

e P, and P, each hold one disk drive and each needs another one
m Example with semaphores

e Binary semaphores A and B, initialized to 1

P, P,
wait (A); wait(B)
wait (B); wait(A)
- |
(slide modified by R. Doemer, 05/13/10) ./ ‘_":‘
Operating System Concepts — 8" Edition 7.3 Silberschatz, Galvin and Gagne ©2009

=

<
“#7/ Dead Locks, System Model

B Resourcetypes R, R,, .. ., R,
CPU cycles, memory space, /O devices
® Each resource type R; has W, instances.
m Each process utilizes a resource as follows:
e request
e use

e release

(slide modified by R. Doemer, 05/13/10)
Operating System Concepts — 81" Edition 7.4 Silberschatz, Galvin and Gagne ©2009

=

x"""""k 1 i
r &1 Deadlock Characterization

Deadlock can arise if and only if four conditions hold simultaneously:

® Mutual exclusion: only one process at a time can use a resource

® Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

® No preemption: aresource can be released only voluntarily by
the process holding it, after that process has completed its task

m Circular wait: there exists a set {Pg, Py, ..., P,} of waiting
processes such that P, is waiting for a resource that is held by P,
P, is waiting for a resource that is held by P, ...,
P, is waiting for a resource that is held by P,
and P, is waiting for a resource that is held by Py,

Note that these four are necessary conditions!

el =)
(slide modified by R. Doemer, 05/13/10) [%

28

Operating System Concepts — 8" Edition 7.5 Silberschatz, Galvin and Gagne ©2009

=
e

“$7/ Resource-Allocation Graph

Resource-Allocation Graph:
A set of vertices V and a set of edges E.

B Vs partitioned into two types:

o P={P;, P, ..., P},
the set consisting of all the processes in the system

o R={R., R, ... R},
the set consisting of all resource types in the system

m E is partitioned into two types:
e request edge — directed edge P, —> R,
e assignment edge — directed edge R; — P;

(slide modified by R. Doemer, 05/13/10)
Operating System Concepts — 81" Edition 7.6 Silberschatz, Galvin and Gagne ©2009

-1’-""*“5- i
> o Resource-Allocation Graph

B Resource type with 4 instances

Process

® P, requests instance of R,

oo

R;
® P, is holding an instance of R,
R, £S5 00
- ,a”}ii.
(slide modified by R. Doemer, 05/13/10) 4 "j‘
Operating System Concepts — 8" Edition 7.7 Silberschatz, Galvin and Gagne ©2009

“$Example of a Resource-Allocation Graph

R, Rs
L) L]
\ \
G\{
/
®
e L]
®
R, .
R,

T
N el o
(slide modified by R. Doemer, 05/13/10) .. fi.*
Operating System Concepts — 81" Edition 7.8 Silberschatz, Galvin and Gagne ©2009

=

o
“$”Resource-Allocation Graph With A Deadlock

/
L]
L L
L]
R, o
R,
Operating System Concepts — 8" Edition 7.9 Silberschatz, Galvin and Gagne ©2009

w1,33-’JGraph With A Cycle But No Deadlock

_\

P
R, >
./
o

Py
R,

A

°
o

Operating System Concepts — 81" Edition 7.10 Silberschatz, Galvin and Gagne ©2009

S Basic Facts

m [f resource-allocation graph contains no cycles
= no deadlock!

m |f resource-allocation graph contains a cycle
=

e if only one instance exists per resource type,
then it is a deadlock

e if several instances exist per resource type,
then there is a possibility of a deadlock

(slide modified by R. Doemer, 05/13/10)
Operating System Concepts — 8" Edition 7.11 Silberschatz, Galvin and Gagne ©2009

x""“‘k?& H 1
“$*Methods for Dealing with Deadlocks

® Ensure that the system will never enter a deadlock state
e Deadlock prevention
e Deadlock avoidance

m Allow the system to enter a deadlock state and then recover
e Recovery from deadlock

®m Ignore the problem and pretend that deadlocks never occur
in the system

e used by most operating systems,
including UNIX and Windows

(slide modified by R. Doemer, 05/13/10) :

Operating System Concepts — 81" Edition 7.12 Silberschatz, Galvin and Gagne ©2009

(™
(@,

r o Deadlock Prevention

To prevent deadlocks from occurring,
we can restrain the ways request can be made.

Prevent one of the four necessary conditions!

® Mutual Exclusion — not required for sharable resources;
must hold for non-sharable resources

® Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources

e Require process to request and be allocated all its resources
before it begins execution, or allow process to request
resources only when the process has none

e Low resource utilization; starvation possible

.
(slide modified by R. Doemer, 05/13/10) .. ‘:
Operating System Concepts — 8" Edition 7.13 Silberschatz, Galvin and Gagne ©2009

™=

/"""“k. 1
“#77 Deadlock Prevention (Cont.)

® No Preemption —

e If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released

e Preempted resources are added to the list of resources for which
the process is waiting

e Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting

m Circular Wait — impose a total ordering of all resource types, and
require that each process requests resources in an increasing order of
enumeration

e This is the most realistic way of deadlock prevention!

/:;l\’“a

R -- ot)
(slide modified by R. Doemer, 05/13/10) ... ‘Z
Operating System Concepts — 81" Edition 7.14 Silberschatz, Galvin and Gagne ©2009

End of Chapter 7

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

