
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 7:  Deadlocks

(slides selected/modified by R. Doemer, 01/12/11)

7.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection 

 Recovery from Deadlock 

(slide modified by R. Doemer, 05/13/10)



2

7.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Deadlock Problem

 A set of blocked processes, each holding a resource and
waiting to acquire a resource held by another process in the set

 Application Example

 System has 2 disk drives

 P1 and P2 each hold one disk drive and each needs another one

 Example with semaphores

 Binary semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

(slide modified by R. Doemer, 05/13/10)

7.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dead Locks, System Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request 

 use 

 release

(slide modified by R. Doemer, 05/13/10)



3

7.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a resource

 Hold and wait: a process holding at least one resource is waiting 
to acquire additional resources held by other processes

 No preemption: a resource can be released only voluntarily by 
the process holding it, after that process has completed its task

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting 
processes such that P0 is waiting for a resource that is held by P1, 
P1 is waiting for a resource that is held by P2, …,
Pn–1 is waiting for a resource that is held by Pn,
and Pn is waiting for a resource that is held by P0.

Note that these four are necessary conditions!

Deadlock can arise if and only if four conditions hold simultaneously:

(slide modified by R. Doemer, 05/13/10)

7.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource-Allocation Graph

 V is partitioned into two types:

 P = {P1, P2, …, Pn},
the set consisting of all the processes in the system

 R = {R1, R2, …, Rm},
the set consisting of all resource types in the system

 E is partitioned into two types:

 request edge – directed edge Pi  Rj

 assignment edge – directed edge Rj  Pi

Resource-Allocation Graph:
A set of vertices V and a set of edges E.

(slide modified by R. Doemer, 05/13/10)



4

7.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource-Allocation Graph

 Process

 Resource type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Rj

Pi

Rj

(slide modified by R. Doemer, 05/13/10)

Pi

7.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of a Resource-Allocation Graph

(slide modified by R. Doemer, 05/13/10)



5

7.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource-Allocation Graph With A Deadlock

7.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Graph With A Cycle But No Deadlock



6

7.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Facts

 If resource-allocation graph contains no cycles
 no deadlock!

 If resource-allocation graph contains a cycle


 if only one instance exists per resource type, 
then it is a deadlock

 if several instances exist per resource type, 
then there is a possibility of a deadlock

(slide modified by R. Doemer, 05/13/10)

7.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Methods for Dealing with Deadlocks

 Ensure that the system will never enter a deadlock state

 Deadlock prevention

 Deadlock avoidance

 Allow the system to enter a deadlock state and then recover

 Recovery from deadlock

 Ignore the problem and pretend that deadlocks never occur
in the system

 used by most operating systems,
including UNIX and Windows

(slide modified by R. Doemer, 05/13/10)



7

7.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources;
must hold for non-sharable resources

 Hold and Wait – must guarantee that whenever a process 
requests a resource, it does not hold any other resources

 Require process to request and be allocated all its resources 
before it begins execution, or allow process to request 
resources only when the process has none

 Low resource utilization; starvation possible

To prevent deadlocks from occurring,
we can restrain the ways request can be made.

Prevent one of the four necessary conditions!

(slide modified by R. Doemer, 05/13/10)

7.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests another 
resource that cannot be immediately allocated to it, then all 
resources currently being held are released

 Preempted resources are added to the list of resources for which 
the process is waiting

 Process will be restarted only when it can regain its old resources, 
as well as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types, and 
require that each process requests resources in an increasing order of 
enumeration

 This is the most realistic way of deadlock prevention!

(slide modified by R. Doemer, 05/13/10)



8

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 7


