
EECS211: Advanced System Software Lecture 5

(c) 2011 R. Doemer 1

EECS 211:
Advanced System Software

Lecture 5

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 2

Lecture 5: Overview

• Operating Systems Review
– Prerequisite Quiz Discussion

• The Nachos System
– Introduction

– Overview

• Assignment 1
– Introduction to Nachos, Threads

• Assignment 2
– Concurrency and Synchronization



EECS211: Advanced System Software Lecture 5

(c) 2011 R. Doemer 2

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 3

Operating Systems Review

• Prerequisite Quiz Discussion
– Results

• Overall quite positive

• Most seem to be well-prepared

• Some may need improvement in C/C++ programming…

– Solution
• PrerequisiteQuiz_Solution.pdf

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 4

The Nachos System

• Introduction
– “Not Another Completely Heuristic Operating System”
– Instructional operating system

• designed by Th. Anderson, UC Berkeley (in early 90’s)
• designed for teaching (undergraduate level!)

– Simple, but working system
• Concepts are learned by hands-on experimentation

– Covers most significant concepts of a modern OS
• threads and process synchronization
• multi-programming
• file systems
• virtual memory
• networking

– Usable in regular Unix environment
– Well-documented source code freely available



EECS211: Advanced System Software Lecture 5

(c) 2011 R. Doemer 3

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 5

The Nachos System

• Documentation
– Text book, 7th edition, Appendix D

• Local copy available on course web site

– Source code (!)
• Well-commented C/C++ code

– Additional online resources
• Nachos home page
• Nachos roadmap
• Wikipedia entry

• Why not Linux?
– Huge size and complexity
– Development and test environment (“naked PCs”?)
– Debugging (nightmare!)

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 6

The Nachos System

• User code:
• Cross-compiled

C/C++ code

• emulated by
MIPS simulator

• Kernel:
• Compiled

C/C++ code

• normal (debug’able)
Unix process

• I/O System:
• simulated by

Unix process I/O

• Overview



EECS211: Advanced System Software Lecture 5

(c) 2011 R. Doemer 4

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 7

The Nachos System

• User code:
• Cross-compiled

C/C++ code

• emulated by
MIPS simulator

• Kernel:
• Compiled

C/C++ code

• normal (debug’able)
Unix process

• I/O System:
• simulated by

Unix process I/O

• Overview

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 8

The Nachos System

• Overview

• User code:
• Cross-compiled

C/C++ code

• emulated by
MIPS simulator

• Kernel:
• Compiled

C/C++ code

• normal (debug’able)
Unix process

• I/O System:
• simulated by

Unix process I/O



EECS211: Advanced System Software Lecture 5

(c) 2011 R. Doemer 5

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 9

Assignment 1

• Introduction to the Nachos System
– Task 1: Read the overview chapter

• Text book, Appendix D (contents online)

– Task 2: Install the software
• Setup environment, copy tar-ball, unpack, compile, test

– Task 3: Understand the Nachos system!
• Read documents and source code

• Deliverables
– Log output for  ./nachos –rs 42
– What is the purpose of SWITCH()?

– Why is SWITCH() not implemented in C/C++?

– Why does the execution order change with –rs option?

• Due by email to doemer@uci.edu
– Wednesday, January 26, 2011, at 2pm (sharp!)

EECS211: Advanced System Software, Lecture 5 (c) 2011 R. Doemer 10

Assignment 2

• Thread Synchronization in Nachos
– Task 1: Implement the missing locks and condition variables

• files synch.h and synch.cc

– Task 2: Test the locks and condition variables
• file threadtest.cc

(based on threadtest.cc.W11templateA2)
• implement safe scheduling of strictly alternating threads

– no change in execution order due to any –rs value!

• Deliverables
– code for locks, condition variables, and safe test case

– log file of test runs with five different random seeds
– Email to doemer@uci.edu

• Due by email to doemer@uci.edu
– Wednesday, February 2, 2011, at 2pm (sharp!)


