
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 8: Main Memory

(slides improved/selected by R. Doemer, 01/14/11)

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Memory Management

 Background

 Swapping

 Contiguous Memory Allocation

 Paging

 Structure of the Page Table

 Segmentation

 Example: The Intel Pentium

(slide modified by R. Doemer, 05/17/10)

2

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To provide a detailed description of various ways of organizing
memory hardware

 To discuss various memory-management techniques,
including paging and segmentation

 To provide a detailed description of the Intel Pentium, which
supports both pure segmentation and segmentation with paging

(slide modified by R. Doemer, 05/17/10)

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Program must be brought (from disk) into memory and placed
within a process for it to be run

 Main memory and registers are the only storage
the CPU can access directly

 Register access in one CPU clock cycle (or less)

 Main memory access can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory is required to ensure safe cooperation
of processes

(slide modified by R. Doemer, 05/17/10)

3

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses
can happen at three different stages

 Compile time: If memory location is known a priori,
compiler can generate absolute code;
must recompile code if starting location changes

 Load time: Compiler must generate relocatable code
if memory location is not known at compile time;
Loader completes address binding

 Execution time: Address binding can be delayed until run time
if the process can be moved during its execution
from one memory segment to another;
need hardware support in CPU for address mapping
(e.g., base and limit registers);
Memory Management Unit in CPU determines address binding

(slide modified by R. Doemer, 05/17/10)

4

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-Step Processing of a User Program

(slide modified by R. Doemer, 05/17/10)

Link time

Compile time

Load time

Run time

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Linking

 Dynamic Linking: Linking is postponed until execution time

 Dynamic linking is also known as shared libraries

 A small piece of code, a stub routine, is used to locate the
appropriate memory-resident library routine

 Stub replaces itself with the address of the routine,
and then executes the routine

 Operating system needed to check if routine is in the processes’
memory address

 Dynamic linking is particularly useful for libraries
(which then can be shared by multiple processes)

(slide modified by R. Doemer, 05/17/10)

5

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical vs. Physical Address Space

 The concept of a logical address space
that is bound to a separate physical address space
is central to proper memory management

 Logical address –
generated by the CPU; also referred to as virtual address

 Physical address –
address seen by the memory unit

 Logical and physical addresses are the same
in compile-time and load-time address-binding schemes

 Logical (virtual) and physical addresses differ
in execution-time address-binding scheme

(slide modified by R. Doemer, 05/17/10)

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Management Unit (MMU)

 Memory-Management Unit (MMU):
Hardware device that maps virtual to physical address

 In MMU scheme, the value in a relocation register is added
to every address generated by a user process
at the time it is sent to memory

 The user program deals with logical addresses;
it never sees the real physical addresses

(slide modified by R. Doemer, 05/17/10)

6

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Conceptual MMU with a Relocation Register

(slide modified by R. Doemer, 05/17/10)

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swapping

 Swapping:
A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution

 Backing store – fast disk, large enough to accommodate copies
of all memory images for all processes;
must provide direct access to these memory images

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

 Major part of swap time is transfer time;
transfer time is directly proportional to the amount of memory swapped

 Roll out, roll in – swapping variant used for priority-based scheduling;
lower-priority process is swapped out so that a higher-priority process
can be loaded and executed

 Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows)

(slide modified by R. Doemer, 05/17/10)

7

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of Swapping

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Main memory is usually divided into two partitions:

 Resident operating system, usually held in low memory
with interrupt vector

 User processes then held in high memory

 Relocation registers are used to protect user processes from
each other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses –
each logical address must be less than the limit register

 MMU maps logical address to physical address dynamically
(at run time)

(slide modified by R. Doemer, 05/17/10)

8

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Hardware Support for Relocation and Limit Registers

(slide modified by R. Doemer, 05/17/10)

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Multiple-partition allocation

 Hole – block of available memory;
holes of various sizes are scattered throughout memory

 When a process arrives, it is allocated memory
from a hole large enough to accommodate it

 Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

(slide modified by R. Doemer, 05/17/10)

9

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough

 Produces the smallest leftover hole

 Must search entire list, unless ordered by size

 Worst-fit: Allocate the largest hole

 Produces the largest leftover hole

 Must also search entire list, unless ordered by size

Dynamic Storage-Allocation Problem:
How to satisfy a request of size n from a list of free holes

First-fit and best-fit are usually better than worst-fit
in terms of speed and storage utilization.

(slide modified by R. Doemer, 05/17/10)

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Fragmentation

 Internal Fragmentation –
allocated memory is often slightly larger than requested memory
(e.g., 64 bytes allocated for a request of 55 bytes); this size difference
is internal to a memory partition, but is not being used

 External Fragmentation –
many small holes exist between allocated memory partitions;
total memory space is available for a request, but it is not contiguous

 External fragmentation can be reduced by compaction

 Relocate memory contents to place all free memory together
in one large block

 Compaction is possible only if relocation is dynamic,
and is done at execution time

 I/O problem

 Cannot relocate process while it is involved in I/O

 Do I/O only into OS buffers

(slide modified by R. Doemer, 05/18/10)

