
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 8: Main Memory

(slides improved/selected by R. Doemer, 01/14/11)

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Memory Management

 Background

 Swapping

 Contiguous Memory Allocation

 Paging

 Structure of the Page Table

 Segmentation

 Example: The Intel Pentium

(slide modified by R. Doemer, 05/17/10)

2

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To provide a detailed description of various ways of organizing
memory hardware

 To discuss various memory-management techniques,
including paging and segmentation

 To provide a detailed description of the Intel Pentium, which
supports both pure segmentation and segmentation with paging

(slide modified by R. Doemer, 05/17/10)

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Program must be brought (from disk) into memory and placed
within a process for it to be run

 Main memory and registers are the only storage
the CPU can access directly

 Register access in one CPU clock cycle (or less)

 Main memory access can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory is required to ensure safe cooperation
of processes

(slide modified by R. Doemer, 05/17/10)

3

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses
can happen at three different stages

 Compile time: If memory location is known a priori,
compiler can generate absolute code;
must recompile code if starting location changes

 Load time: Compiler must generate relocatable code
if memory location is not known at compile time;
Loader completes address binding

 Execution time: Address binding can be delayed until run time
if the process can be moved during its execution
from one memory segment to another;
need hardware support in CPU for address mapping
(e.g., base and limit registers);
Memory Management Unit in CPU determines address binding

(slide modified by R. Doemer, 05/17/10)

4

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-Step Processing of a User Program

(slide modified by R. Doemer, 05/17/10)

Link time

Compile time

Load time

Run time

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Linking

 Dynamic Linking: Linking is postponed until execution time

 Dynamic linking is also known as shared libraries

 A small piece of code, a stub routine, is used to locate the
appropriate memory-resident library routine

 Stub replaces itself with the address of the routine,
and then executes the routine

 Operating system needed to check if routine is in the processes’
memory address

 Dynamic linking is particularly useful for libraries
(which then can be shared by multiple processes)

(slide modified by R. Doemer, 05/17/10)

5

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical vs. Physical Address Space

 The concept of a logical address space
that is bound to a separate physical address space
is central to proper memory management

 Logical address –
generated by the CPU; also referred to as virtual address

 Physical address –
address seen by the memory unit

 Logical and physical addresses are the same
in compile-time and load-time address-binding schemes

 Logical (virtual) and physical addresses differ
in execution-time address-binding scheme

(slide modified by R. Doemer, 05/17/10)

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Management Unit (MMU)

 Memory-Management Unit (MMU):
Hardware device that maps virtual to physical address

 In MMU scheme, the value in a relocation register is added
to every address generated by a user process
at the time it is sent to memory

 The user program deals with logical addresses;
it never sees the real physical addresses

(slide modified by R. Doemer, 05/17/10)

6

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Conceptual MMU with a Relocation Register

(slide modified by R. Doemer, 05/17/10)

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swapping

 Swapping:
A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution

 Backing store – fast disk, large enough to accommodate copies
of all memory images for all processes;
must provide direct access to these memory images

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

 Major part of swap time is transfer time;
transfer time is directly proportional to the amount of memory swapped

 Roll out, roll in – swapping variant used for priority-based scheduling;
lower-priority process is swapped out so that a higher-priority process
can be loaded and executed

 Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows)

(slide modified by R. Doemer, 05/17/10)

7

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of Swapping

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Main memory is usually divided into two partitions:

 Resident operating system, usually held in low memory
with interrupt vector

 User processes then held in high memory

 Relocation registers are used to protect user processes from
each other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses –
each logical address must be less than the limit register

 MMU maps logical address to physical address dynamically
(at run time)

(slide modified by R. Doemer, 05/17/10)

8

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Hardware Support for Relocation and Limit Registers

(slide modified by R. Doemer, 05/17/10)

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Multiple-partition allocation

 Hole – block of available memory;
holes of various sizes are scattered throughout memory

 When a process arrives, it is allocated memory
from a hole large enough to accommodate it

 Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

(slide modified by R. Doemer, 05/17/10)

9

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough

 Produces the smallest leftover hole

 Must search entire list, unless ordered by size

 Worst-fit: Allocate the largest hole

 Produces the largest leftover hole

 Must also search entire list, unless ordered by size

Dynamic Storage-Allocation Problem:
How to satisfy a request of size n from a list of free holes

First-fit and best-fit are usually better than worst-fit
in terms of speed and storage utilization.

(slide modified by R. Doemer, 05/17/10)

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Fragmentation

 Internal Fragmentation –
allocated memory is often slightly larger than requested memory
(e.g., 64 bytes allocated for a request of 55 bytes); this size difference
is internal to a memory partition, but is not being used

 External Fragmentation –
many small holes exist between allocated memory partitions;
total memory space is available for a request, but it is not contiguous

 External fragmentation can be reduced by compaction

 Relocate memory contents to place all free memory together
in one large block

 Compaction is possible only if relocation is dynamic,
and is done at execution time

 I/O problem

 Cannot relocate process while it is involved in I/O

 Do I/O only into OS buffers

(slide modified by R. Doemer, 05/18/10)

