
1

8.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Recap
 Main memory and registers are the only storage the CPU can access directly

 Cache sits between main memory and CPU registers

 A pair of base and limit registers define the logical address space

 Address binding of instructions and data to memory addresses can happen at
three different stages

 Compile time

 Load time

 Execution time (MMU is needed for address mapping)

 Dynamic linking is particularly useful for libraries

 Logical (Virtual) address vs. Physical address

 Memory-Management Unit (MMU): HW device that maps virtual to physical
address (relocation register)

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Recap (cont.)
 Swapping: A process can be swapped temporarily out of memory to a

backing store, and then brought back into memory for continued execution.

 Compile time & load time address binding: back to the same location

 Execution time address binding: not necessary

 Roll out, roll in – swapping variant used for priority-based scheduling;

 Hole – block of available memory; scattered throughout memory with
various size

 Dynamic Storage-Allocation Problem:
How to satisfy a request of size n from a list of free holes

 First-fit, Best-fit, Worst-fit

 Internal Fragmentation
allocated memory is often slightly larger than requested memory

vs. External Fragmentation –
many small holes exist between allocated memory partitions;
total memory space is available for a request, but it is not contiguous; can
be reduced by compaction

2

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Memory Management

 Background

 Swapping

 Contiguous Memory Allocation

 Paging

 Structure of the Page Table

 Segmentation

 Example: The Intel Pentium

(slide modified by R. Doemer, 01/14/11)

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging

 Paging avoids external fragmentation (and compaction) entirely

 Internal fragmentation problem remains

 Divide logical memory into blocks of same size called pages
(size is power of 2, typically between 512 bytes and 16M bytes)

 Divide physical memory into fixed-sized blocks called frames
(size of a frame is the same as page size)

 Set up a page table to translate logical to physical addresses

 Keep track of all free frames

 Then, physical (logical?) address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is available

 To run a program of size n pages, find n free frames and load the program

(slide modified by R. Doemer, 05/18/10)

3

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Logical and Physical Memory

(slide modified by R. Doemer, 05/18/10)

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Address Translation Scheme

 Logical address generated by CPU is divided into:

 Page number (p) –
used as an index into a page table
which contains the base address of each page in physical memory

 Page offset (d) –
is combined with base address to define the physical memory address
that is sent to the memory unit

 Example for a given logical address space of 2m and a page size of 2n

page number page offset

p d

m - n n

(slide modified by R. Doemer, 05/18/10)

4

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Tiny Example

Assume a 32-byte memory
with 4-byte pages

- 5-bit address space,
divided into

- 3 bits for page number,
and

- 2 bits for page offset

(slide modified by R. Doemer, 05/18/10)

5

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Allocation, Free Frames

Before process allocation After process allocation

(slide modified by R. Doemer, 05/18/10)

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) in CPU points to the page table

 Page-table length register (PTLR) indicates size of the page table

 In this scheme, every data and instruction access
requires two memory accesses:

 one access two the page table, and

 one access for the actual data/instruction.

 Unless treated, this results in running all programs at half the speed!

(slide modified by R. Doemer, 05/18/10)

6

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Translation Look-aside Buffer

 Translation Look-aside Buffer (TLB)

 a special fast-lookup hardware cache

 solves the two memory access problem

 implemented in hardware as an associative memory

 Associative memory implements parallel search

Address translation from logical address (p, d) to physical address (f, d)

 If page pi is in associative memory, get frame number fi out

 Otherwise, get frame number f from page table in memory
and update TLB

(slide modified by R. Doemer, 05/18/10)

Page # Frame #

p1
p2
p3

p4

f1
f2
f3
f4

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware With TLB

(slide modified by R. Doemer, 05/18/10)

7

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Memory Protection

 Memory protection can be easily implemented in paging scheme
by associating a set of protection bits with each frame

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Read, write, execute bits control valid access types to pages

 Write access may be denied to shared libraries

 Execute access may be denied to data and stack memory
(quite effective for virus protection!)

 etc.

(slide modified by R. Doemer, 05/18/10)

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Valid/Invalid Bit In Page Table

(slide modified by R. Doemer, 05/18/10)

8

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, GUI systems).

 Shared code must appear in same location in the logical
address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear
anywhere in the logical address space

(slide modified by R. Doemer, 05/18/10)

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Shared Pages Example

(slide modified by R. Doemer, 05/18/10)

9

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

(slide modified by R. Doemer, 05/18/10)

10

8.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided into:

 a page number consisting of 20 bits

 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided into:

 a 2x10-bit page number (10 bits for level 1, 10 bits for level 2)

 a 12-bit page offset

 Thus, a logical address is composed as follows:

where p1 is an index into the outer page table,
and p2 is an index into the inner page table,
and d the displacement within the page

page number page offset

p1 p2 d

10 10 12

(slide modified by R. Doemer, 05/18/10)

8.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Paging Example

 Address-Translation Scheme

(slide modified by R. Doemer, 05/18/10)

11

8.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-level Paging Scheme

 For 64-bit machines, 2-level paging is no longer appropriate

 For 4K pages, the outer page table would contain 242 x 4 bytes!

 Using 3 levels of paging, the 2nd outer page is still daunting
with 234 bytes!

 Thus, 4 or more levels would be needed…

(slide modified by R. Doemer, 05/18/10)

8.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements
hashing to the same location

 Virtual page numbers are compared in this chain
searching for a match

 If a match is found, the corresponding physical frame is
extracted

(slide modified by R. Doemer, 05/18/10)

12

8.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hashed Page Tables

(slide modified by R. Doemer, 05/18/10)

8.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inverted Page Tables

 Usually, every process has its own associated page table
(which may consume a large amount of memory space)

 Inverted Page Table:
One entry for each real page of memory

 Entry consists of the virtual address
of the page stored in that real memory location,
with information about the process that owns that page

 Decreases memory needed to store the page table,
but increases time needed to search the table
when a page reference occurs

 Use hash table to limit the search to one — or at most a few —
page-table entries

(slide modified by R. Doemer, 05/18/10)

13

8.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inverted Page Tables

(slide modified by R. Doemer, 05/18/10)

8.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation

 Segmentation is an alternative to paging

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 In the programmer’s view, a segment is a logical unit such as:

main program

procedure / function / method

object

local variables, global variables

shared memory block

stack

symbol table

(slide modified by R. Doemer, 05/18/10)

14

8.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation: Programmer’s View of a Program

(slide modified by R. Doemer, 05/18/10)

8.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

15

8.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Architecture

 Logical address consists of a tuple:

<segment-number, offset>,

 Segment table – maps segment-number to physical address

 Each table entry has:

 Base –
starting physical address where the segment resides in memory

 Limit –
length of the segment

 Segment-table base register (STBR)
points to the segment table’s location in memory

 Segment-table length register (STLR)
indicates number of segments used by a program

 segment number s is legal if s < STLR

(slide modified by R. Doemer, 05/18/10)

8.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Hardware

16

8.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Segmentation

8.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation: Sharing and Protection

 Protection

 Similar to protection bits in paging scheme

 With each entry in segment table, associate:

 validation bit, if 0 illegal segment

 read/write/execute privileges

 Code and data sharing can occur naturally at segment level

 Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

(slide modified by R. Doemer, 05/18/10)

17

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 8

