™
(cm

ar & Recap

Main memory and registers are the only storage the CPU can access directly

Cache sits between main memory and CPU registers
A pair of base and limit registers define the logical address space

Address binding of instructions and data to memory addresses can happen at
three different stages

e Compile time

e Load time

e Execution time (MMU is needed for address mapping)
Dynamic linking is particularly useful for libraries

Logical (Virtual) address vs. Physical address

Memory-Management Unit (MMU): HW device that maps virtual to physical
address (relocation register)

")
Operating System Concepts — 8" Edition 8.1 Silberschatz, Galvin and Gagne ©2009

™
o,

r & Recap (cont.)

m Swapping: A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued execution.

e Compile time & load time address binding: back to the same location
e Execution time address binding: not necessary
® Roll out, roll in — swapping variant used for priority-based scheduling;

m Hole — block of available memory; scattered throughout memory with
various size

® Dynamic Storage-Allocation Problem:
How to satisfy a request of size n from a list of free holes

o First-fit, Best-fit, Worst-fit

® Internal Fragmentation
allocated memory is often slightly larger than requested memory

vs. External Fragmentation —

many small holes exist between allocated memory partitions;

total memory space is available for a request, but it is not contiguous; can
be reduced by compaction /f”\

i pti
Operating System Concepts — 81" Edition 8.2 Silberschatz, Galvin and Gagne ©2009

=

&

,r.""""j)
“»”/ Chapter 8: Memory Management

[|
[|
|
m Paging
m Structure of the Page Table
B Segmentation
m Example: The Intel Pentium
_,../.‘ : i‘,‘ ‘\,
(slide modified by R. Doemer, 01/14/11) ./ ‘f
Operating System Concepts — 8" Edition 8.3 Silberschatz, Galvin and Gagne ©2009
“:—
L >, ‘k
Y -/

Paging

m Paging avoids external fragmentation (and compaction) entirely
e Internal fragmentation problem remains

® Divide logical memory into blocks of same size called pages
(size is power of 2, typically between 512 bytes and 16M bytes)

® Divide physical memory into fixed-sized blocks called frames
(size of a frame is the same as page size)

Set up a page table to translate logical to physical addresses
m Keep track of all free frames

® Then, physical (logical?) address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is available

® To run a program of size n pages, find n free frames and load the program

et
(slide modified by R. Doemer, 05/18/10)
Operating System Concepts — 81" Edition 8.4 Silberschatz, Galvin and Gagne ©2009

=

“""j»_f'_’ Paging: Logical and Physical Memory

frame
number
page 0 0
page 1 1| page O
page 2 2
page 3 page table 3| page 2
Iogical 4 page 1
memory
5
6
7| page 3
physical
memory
A0
(slide modified by R. Doemer, 05/18/10) [%+
Operating System Concepts — 8" Edition 8.5 Silberschatz, Galvin and Gagne ©2009

»"-m‘k-“— - I
g./;.;%.._g Paging: Address Translation Scheme

m Logical address generated by CPU is divided into:

e Page number (p) —
used as an index into a page table
which contains the base address of each page in physical memory

e Page offset (d) —
is combined with base address to define the physical memory address
that is sent to the memory unit

m Example for a given logical address space of 2™and a page size of 2"

page number page offset
p d
m-n n
(slide modified by R. Doemer, 05/18/10) .. T

Operating System Concepts — 81" Edition 8.6 Silberschatz, Galvin and Gagne ©2009

> & Paging Hardware

f
logical physical
address address 0000 ... 0000
CPU
f1111 ... 1111
p —
f
physical
page table memory
Operating System Concepts — 8" Edition 8.7 Silberschatz, Galvin and Gagne ©2009
=™
b : . T
& Paging: Tiny Example
0|a 0
Assume a 32-byte memory B
i - 3|d
with 4-byte pages s i s
. 5 [j
- 5-bit address space, slg f k
divided into 'K 2[1] 5 [m
- 3 bits for page number, fk el2 0
1)1 page table P
and Ig r: 12
- 2 bits for page offset i
logical memory 16
o |2
c
d
24 ?
g
h
28
physical memory
el |
(slide modified by R. Doemer, 05/18/10) . ':
Operating System Concepts — 81" Edition 8.8 Silberschatz, Galvin and Gagne ©2009

=

“$7’ Paging: Allocation, Free Frames

free-frame list free-frame list
14 15
13 13 13 |page 1
18
14 14 |page 0
15 15
16 16
17 17
18 18 |page 2
19 19
20 20 [page 3|
21 new-process page table 21
(a) (b)
Before process allocation After process allocation ".\
= |
(slide modified by R. Doemer, 05/18/10) [%+
Operating System Concepts — 8" Edition 8.9 Silberschatz, Galvin and Gagne ©2009

»Paging: Implementation of Page Table

Page table is kept in main memory
Page-table base register (PTBR) in CPU points to the page table
Page-table length register (PTLR) indicates size of the page table

In this scheme, every data and instruction access
requires two memory accesses:

e one access two the page table, and
e one access for the actual data/instruction.

m Unless treated, this results in running all programs at half the speed!

(slide modified by R. Doemer, 05/18/10) ..
Operating System Concepts — 81" Edition 8.10 Silberschatz, Galvin and Gagne ©2009

=

“#Paging: Translation Look-aside Buffer

® Translation Look-aside Buffer (TLB)

e a special fast-lookup hardware cache

e solves the two memory access problem

e implemented in hardware as an associative memory
B Associative memory implements parallel search

Page # Frame #
Py f
P2 f,
Ps f3
P4 f,

Address translation from logical address (p, d) to physical address (f, d)
e [f page p; is in associative memory, get frame number f; out

e Otherwise, get frame number f from page table in memory
and update TLB

(slide modified by R. Doemer, 05/18/10) .
Operating System Concepts — 8" Edition 8.11 Silberschatz, Galvin and Gagne ©2009

&-f'?,_-»_f Paging Hardware With TLB

logical
address
CPU p
page frame
number number
TLB hit physical
address
d
TLB
p {
TLB miss
f
ot physical
memory
page table
A
(slide modified by R. Doemer, 05/18/10) \'f‘

Operating System Concepts — 81" Edition 8.12 Silberschatz, Galvin and Gagne ©2009

> o Paging: Memory Protection

® Memory protection can be easily implemented in paging scheme
by associating a set of protection bits with each frame

m Valid-invalid bit attached to each entry in the page table:

e “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

e ‘“invalid” indicates that the page is not in the process’
logical address space

m Read, write, execute bits control valid access types to pages
e Write access may be denied to shared libraries

e Execute access may be denied to data and stack memory
(quite effective for virus protection!)

e etc.

N =
7 (

(slide modified by R. Doemer, 05/18/10) b
Operating System Concepts — 8" Edition 8.13 Silberschatz, Galvin and Gagne ©2009

o
“$77 Paging: Valid/Invalid Bit In Page Table

o]
2|
2| page O
00000 frame number valid-invalid bit
page 0 \ ,/ 3| page 1
o|2|wv
page 1 1lalv 4| page 2
2|4 |v
age 2 5
= 3 [7[v]
page 3 4|8|v 6
5|9 (v
page 4 6 [GRlN 7| page 3
710 i
10,488 page 5 I 8| page 4
12,287 page table
9| page 5
.
page n
(slide modified by R. Doemer, 05/18/10) .. "'jv‘

Operating System Concepts — 81" Edition 8.14 Silberschatz, Galvin and Gagne ©2009

&wf Paging: Shared Pages

B Shared code

e One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, GUI systems).

e Shared code must appear in same location in the logical
address space of all processes

m Private code and data
e Each process keeps a separate copy of the code and data

e The pages for the private code and data can appear
anywhere in the logical address space

- ,V‘}‘,‘_ ‘]

R

(slide modified by R. Doemer, 05/18/10) .. "j‘

Operating System Concepts — 8" Edition 8.15 Silberschatz, Galvin and Gagne ©2009

=

“$7’ Paging: Shared Pages Example

ed1 0
ed2 n 1| datat
ed3 E 2| data3
data 1 page table 3 edi
for P, ed 1
process P, 4 ed2
ed2
5
ed3d
6 ed3
data 2 age table
. '%r P data 2
ed 1 e
process P,
e
ed2
E 9
ed3
2] 10
data 3 page table
for Py 1
process P, ‘]
troeoie i
(slide modified by R. Doemer, 05/18/10) . M‘

Operating System Concepts — 81" Edition 8.16 Silberschatz, Galvin and Gagne ©2009

=
r i Structure of the Page Table

m Hierarchical Paging

m Hashed Page Tables

® Inverted Page Tables

o]
TR
A I

Operating System Concepts — 8" Edition 8.17 Silberschatz, Galvin and Gagne ©2009

r o Hierarchical Page Tables

m Break up the logical address space into multiple page tables
® A simple technique is a two-level page table

0
1 7|
/ . Py
/ : 100
500 N
L3 .
\ - .
4 :
™ 100 500
. . 5
708 4:
e
o 708
\ . =
outer page ™~ 929 2
tab?e 4 =N 900 —=
.
900 :
page of 929
page table
page table :
memory

(slide modified by R. Doemer, 05/18/10) .
Operating System Concepts — 81" Edition 8.18 Silberschatz, Galvin and Gagne ©2009

)
w
Bt i

o i
“$¥/ Two-Level Paging Example

m A logical address (on 32-bit machine with 4K page size) is divided into:
e a page number consisting of 20 bits
e a page offset consisting of 12 bits

m Since the page table is paged, the page number is further divided into:
e a 2x10-bit page number (10 bits for level 1, 10 bits for level 2)
e a 12-bit page offset

B Thus, a logical address is composed as follows:

page number | page offset

P1 P2 d

10 10 12

where p, is an index into the outer page table,
and p, is an index into the inner page table,
and d the displacement within the page

-

remee R
(slide modified by R. Doemer, 05/18/10) . e

28

Operating System Concepts — 8" Edition 8.19 Silberschatz, Galvin and Gagne ©2009

e, i
“#7/ Two-Level Paging Example

B Address-Translation Scheme

logical address

Pr [Pe [d |

o

> >

=

outer page d
table {

page of
page table

-
(slide modified by R. Doemer, 05/18/10)
Operating System Concepts — 81" Edition 8.20 Silberschatz, Galvin and Gagne ©2009

10

r & Multi-level Paging Scheme

m For 64-bit machines, 2-level paging is no longer appropriate
e For 4K pages, the outer page table would contain 242 x 4 bytes!

outer page inner page offset
P1 p> d
42 10 12

e Using 3 levels of paging, the 2" outer page is still daunting
with 234 bytes!

2nd outer page , outer page | innerpage , offset

P 1) P; d
32 10 10 12

e Thus, 4 or more levels would be needed...

(slide modified by R. Doemer, 05/18/10) . e

28

Operating System Concepts — 8" Edition 8.21 Silberschatz, Galvin and Gagne ©2009

Ll Hashed Page Tables

® Common in address spaces > 32 hits

m The virtual page number is hashed into a page table

e This page table contains a chain of elements
hashing to the same location

m Virtual page numbers are compared in this chain
searching for a match

e If a match is found, the corresponding physical frame is
extracted

-
(slide modified by R. Doemer, 05/18/10)
Operating System Concepts — 81" Edition 8.22 Silberschatz, Galvin and Gagne ©2009

11

hr &) Hashed Page Tables
physical
logical address address
Lp[d] B

physical
b memory

% -—’|QI51’T|J|PNIU

hash table
(slide modified by R. Doemer, 05/18/10) /%
Operating System Concepts — 8" Edition 8.23 Silberschatz, Galvin and Gagne ©2009
:};
(e
r Inverted Page Tables

m Usually, every process has its own associated page table
(which may consume a large amount of memory space)

® Inverted Page Table:
One entry for each real page of memory

m Entry consists of the virtual address
of the page stored in that real memory location,
with information about the process that owns that page

m Decreases memory needed to store the page table,
but increases time needed to search the table
when a page reference occurs

® Use hash table to limit the search to one — or at most a few —
page-table entries

(slide modified by R. Doemer, 05/18/10) "3"

Operating System Concepts — 81" Edition 8.24 Silberschatz, Galvin and Gagne ©2009

12

iy
&(}4’. R V
r Inverted Page Tables
logical ;
adgress phy=ical
address physical
CPU (lpid|p|[d]| [i]d}l——m> e
search 1 i
pid [p
page table
(slide modified by R. Doemer, 05/18/10) .. I.*
Operating System Concepts — 8" Edition 8.25 Silberschatz, Galvin and Gagne ©2009
Qb:_
()
& y .
& Segmentation
B Segmentation is an alternative to paging
® Memory-management scheme that supports user view of memory
m A program is a collection of segments
e In the programmer’s view, a segment is a logical unit such as:
main program
procedure / function / method
object
local variables, global variables
shared memory block
stack
symbol table
i . s '}’b 1=
(slide modified by R. Doemer, 05/18/10) .. I.*
Operating System Concepts — 81" Edition 8.26 Silberschatz, Galvin and Gagne ©2009

13

g"";‘\Sﬁgmentation: Programmer’s View of a Program

subroutine

main
program

logical address

Y

- =)
(slide modified by R. Doemer, 05/18/10) .. "‘;‘
Operating System Concepts — 8" Edition 8.27 Silberschatz, Galvin and Gagne ©2009

=

&C"Jp 7

Logical View of Segmentation

1
4
2
3
user space physical memory space
Operating System Concepts — 81" Edition 8.28 Silberschatz, Galvin and Gagne ©2009

14

“#7/ Segmentation Architecture

m Logical address consists of a tuple:
<segment-number, offset>,
Segment table — maps segment-number to physical address
Each table entry has:

e Base —

starting physical address where the segment resides in memory
e Limit—

length of the segment

m Segment-table base register (STBR)
points to the segment table’s location in memory

m Segment-table length register (STLR)
indicates number of segments used by a program

e segment number s is legal if s < STLR

(slide modified by R. Doemer, 05/18/10) [%+
Operating System Concepts — 8" Edition 8.29 Silberschatz, Galvin and Gagne ©2009
b;_
(o
(o Y .
rdh Segmentation Hardware

— limit |base
segment
table
CPU —ﬂ s | d
Y
L <
no
v
trap: addressing error physical memory
Operating System Concepts — 81" Edition 8.30 Silberschatz, Galvin and Gagne ©2009

15

-1'-‘-"""‘5-3:‘ i
. & Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 [B300 | 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
41000 | 4700
o = segment table 430
segmen segmen lsegment 2
4700
logical address space lsegment 4,
5700
6300
lsegment 1
6700

physical memory

Operating System Concepts — 8" Edition 8.31 Silberschatz, Galvin and Gagne ©2009

“¥8egmentation: Sharing and Protection

m Protection
e Similar to protection bits in paging scheme
e With each entry in segment table, associate:
» validation bit, if 0 = illegal segment
» read/write/execute privileges
m Code and data sharing can occur naturally at segment level

B Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

=
(slide modified by R. Doemer, 05/18/10) . T
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8 Edition 8.32

16

End of Chapter 8

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

17

