Chapter 9: Virtual Memory

(slides improved by R. Doemer, 05/27/10)
Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

4

Chapter 9: Virtual Memory

N

ﬂ“

o -}

¥
~

Background

Demand Paging
Copy-on-Write
Memory-Mapped Files
Page Replacement
Allocation of Frames
Thrashing

Allocating Kernel Memory
Other Considerations

Operating-System Examples

(slide modified by R. Doemer, 02/01/11) ./ i+
Operating System Concepts — 8" Edition 9.2 Silberschatz, Galvin and Gagne ©2009

Objectives

m To describe the benefits of a virtual memory system

m To explain the concepts of
e demand paging,
e page-replacement algorithms, and
e allocation of page frames

m To discuss the principle of the working-set model

el
(slide modified by R. Doemer, 05/25/10) b
Operating System Concepts — 8" Edition 9.3 Silberschatz, Galvin and Gagne ©2009

Background

m Virtual memory —
complete separation of user logical memory from physical memory.

e Only part of a program needs to be in memory for its execution

e Logical address space can therefore be much larger
than physical address space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

® Virtual memory can be implemented via:

e Demand paging
e Demand segmentation

-

(slide modified by R. Doemer, 05/25/10) bt N
Operating System Concepts — 81" Edition 9.4 Silberschatz, Galvin and Gagne ©2009

ES

L"{*/"'.'Virtual Memory That is Larger Than Physical Memory

page 0
page 1
page 2 P W
_/
1 —mp
N NN
HE N
_\\
| Il E |
NN
memory _—/
map
page v physical
i memory
virtual
memory
Operating System Concepts — 8" Edition 9.5 Silberschatz, Galvin and Gagne ©2009

e .
K. Virtual Address Space

Max
stack
heap
data
code
0

LA
(slide modified by R. Doemer, 05/25/10) . '5‘
Operating System Concepts — 8" Edition 9.6 Silberschatz, Galvin and Gagne ©2009

“""}’Shared Library Using Virtual Memory

stack stack
shared
shared library pages shared library

heap heap
data data
code code
= |
Operating System Concepts — 8" Edition 9.7 Silberschatz, Galvin and Gagne ©2009

Demand Paging

® Bring a page into memory only when it is needed
e Less /O needed
e Less memory needed
e Faster response
e More users

B Page is needed
= when a CPU instruction references an address in it (e.g. load, store)

B Page Fault
e invalid reference = abort

® not-in-memory = bring to memory

m Lazy swapper —
never swaps a page into memory unless page will be needed

e Swapper that deals with pages is a pager

=%
At
(slide modified by R. Doemer, 05/25/10) .. "j‘

Operating System Concepts — 81" Edition 9.8 Silberschatz, Galvin and Gagne ©2009

.
gr:,’d"'. v . .
MTransfer of a Paged Memory to Contiguous Disk Space

e N
b 4

o] 11 21 s[]
ProgAram swap:out 4&] 5[_5 6‘5 7[_5

8] e[J1o[110

121314151
program
B \ swap in 16D17Q18m19@
20[o1 [122[123[]
main
memory 3
= |
Operating System Concepts — 8" Edition 9.9 Silberschatz, Galvin and Gagne ©2009

Valid-Invalid Bit

m With each page table entry a valid—invalid bit is associated
(v = valid, in-memory, i = invalid, or not-in-memory)

Initially valid—invalid bit is set to i on all entries
Example of a page table snapshot:

Frame # valid-invalid bit
v
\Y
\
Y
i
i
i
page table
m During address translation, if valid—invalid bit in page table entry is i

= page fault

=
i

(slide modified by R. Doemer, 05/25/10) .. "j‘

Operating System Concepts — 81" Edition 9.10 Silberschatz, Galvin and Gagne ©2009

=4
e Ly : :
“»Page Table When Some Pages Are Not in Main Memory

0
1
0 A o
1 B validripvalbd s —
frame it
2 (o] A R L—
° s 000
4 E . & [:|
B
5 , -
6 G .
7 H 5 e
logical page table o E‘ D D
memory
1"
12 .
13
14
15
phvsical memory
Operating System Concepts — 8" Edition 9.11 Silberschatz, Galvin and Gagne ©2009
ey
O ooy
€ Page Fault

m [f a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault
1. Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory = goto step 2
Get empty frame
Swap page into frame
Update tables
Set valid-invalid bit to v
Restart the instruction that caused the page fault

o gk~ w D

T
N el o
(slide modified by R. Doemer, 05/25/10) .. [
Operating System Concepts — 81" Edition 9.12 Silberschatz, Galvin and Gagne ©2009

“$7/ Steps in Handling a Page Fault

page is on
backing store ﬁ\
operating
system
reference tr:ap
load M [
restart page table
instruction
free frame
update bring in
page missing page
tables
physical
memory
S =
. . 2
(slide modified by R. Doemer, 05/25/10) .. I.*
Operating System Concepts — 8" Edition 9.13 Silberschatz, Galvin and Gagne ©2009

" Handling a Page Fault

B Restart instruction:
e sometimes not trivial!
e Special care may need to be taken!

m Example 1: block move instruction where blocks span multiple pages

A

m Example 2: auto increment/decrement instruction

(slide modified by R. Doemer, 05/25/10) .. W

B

Operating System Concepts — 81" Edition 9.14 Silberschatz, Galvin and Gagne ©2009

“#7/Additional Virtual Memory Benefits

m Virtual memory allows other benefits:
- During Process Creation: Copy-on-Write

- Memory-Mapped Files

|

(slide modified by R. Doemer, 05/25/10) ./ ‘_":‘

Operating System Concepts — 8" Edition 9.15 Silberschatz, Galvin and Gagne ©2009
=

gl Copy-on-Write

Consider parent process forks a child process

Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

m If either process modifies a shared page, only then is the page copied

m COW allows more efficient process creation as only modified pages are
copied

m Free pages are allocated from a pool of zeroed-out pages

(slide modified by R. Doemer, 05/25/10)
Operating System Concepts — 81" Edition 9.16 Silberschatz, Galvin and Gagne ©2009

=

O '
<557 Copy-on-Write Example

m Before Process 1 Modifies Page C

physical
process; memory process,

A 4

page A

4

[L—— pageB DE—

|—' page C —1

3

- =)

(slide modified by R. Doemer, 05/25/10) .. "‘;‘

Operating System Concepts — 8" Edition 9.17 Silberschatz, Galvin and Gagne ©2009
=

5 Copy-on-Write Example

m After Process 1 Modifies Page C

physical
process; memory process,

I page A

<—|
D —— page B N
T

page C

» Copy of page C

(slide modified by R. Doemer, 05/25/10) ..
Silberschatz, Galvin and Gagne ©2009

=)
e
g

Operating System Concepts — 8 Edition 9.18

2 Memory-Mapped Files

m Memory-mapped file I/O allows file 1/0O to be treated
as regular memory access by mapping a disk block to a page in memory.

m A file is initially read using demand paging.

B A page-sized portion of the file is read from the file system into a physical
memory frame.

B Subsequent reads/writes to/from the file are treated as ordinary memory
accesses.

m Simplifies file access by treating file /O as ordinary memory access
rather than read(Qand write() system calls

m Also allows several processes to map the same file
allowing the pages in memory to be shared

e :\‘!
(slide modified by R. Doemer, 05/25/10) ./ ""
Operating System Concepts — 8" Edition 9.19 Silberschatz, Galvin and Gagne ©2009

Memory-Mapped Files

PEoCC i
T 2
Q- -—+ - 3
1 - —-— ==) - 4
2 - i 3 < ;.
3 -JI—-—.-I s 6
4 Ft - !
5 5t -] 6 pi=
6 L Llal o
[
[.
I e 1 le — -
process A "_:_____; 5 e — — process B
virtual memory: i virtual memory
1 1
: I—----;- 4 wi
n____-__-: 2 e
physical memory

L— —
I 2 [I 30 G
disk file

-

(slide modified by R. Doemer, 05/25/10) ../
Operating System Concepts — 81" Edition 9.20 Silberschatz, Galvin and Gagne ©2009

