
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 9: Virtual Memory

(slides improved by R. Doemer, 05/27/10)

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Memory-Mapped Files

 Page Replacement

 Allocation of Frames 

 Thrashing

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

(slide modified by R. Doemer, 02/01/11)



2

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of

 demand paging,

 page-replacement algorithms, and

 allocation of page frames

 To discuss the principle of the working-set model

(slide modified by R. Doemer, 05/25/10)

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Virtual memory –
complete separation of user logical memory from physical memory.

 Only part of a program needs to be in memory for its execution

 Logical address space can therefore be much larger
than physical address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

(slide modified by R. Doemer, 05/25/10)



3

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical Memory



9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Address Space

(slide modified by R. Doemer, 05/25/10)



4

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Library Using Virtual Memory

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed 

 Faster response

 More users

 Page is needed
 when a CPU instruction references an address in it (e.g. load, store)

 Page Fault

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper –
never swaps a page into memory unless page will be needed

 Swapper that deals with pages is a pager

(slide modified by R. Doemer, 05/25/10)



5

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v  valid, in-memory, i  invalid, or not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i
 page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table

(slide modified by R. Doemer, 05/25/10)



6

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault

 If a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference  abort

 Just not in memory  goto step 2

2. Get empty frame

3. Swap page into frame

4. Update tables

5. Set valid-invalid bit to v

6. Restart the instruction that caused the page fault

(slide modified by R. Doemer, 05/25/10)



7

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

update
page 
tables

(slide modified by R. Doemer, 05/25/10)

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Handling a Page Fault

 Restart instruction:

 sometimes not trivial!

 Special care may need to be taken!

 Example 1: block move instruction where blocks span multiple pages

 Example 2: auto increment/decrement instruction

(slide modified by R. Doemer, 05/25/10)



8

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Additional Virtual Memory Benefits

 Virtual memory allows other benefits:

- During Process Creation: Copy-on-Write

- Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write

 Consider parent process forks a child process

 Copy-on-Write (COW) allows both parent and child processes to initially 
share the same pages in memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are 
copied

 Free pages are allocated from a pool of zeroed-out pages

(slide modified by R. Doemer, 05/25/10)



9

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write Example

 Before Process 1 Modifies Page C

(slide modified by R. Doemer, 05/25/10)

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write Example

 After Process 1 Modifies Page C

(slide modified by R. Doemer, 05/25/10)



10

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated
as regular memory access by mapping a disk block to a page in memory.

 A file is initially read using demand paging.

 A page-sized portion of the file is read from the file system into a physical 
memory frame.

 Subsequent reads/writes to/from the file are treated as ordinary memory 
accesses.

 Simplifies file access by treating file I/O as ordinary memory access
rather than read()and write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

(slide modified by R. Doemer, 05/25/10)

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)


