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Chapter 9: Virtual Memory
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Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of

 demand paging,

 page-replacement algorithms, and

 allocation of page frames

 To discuss the principle of the working-set model

(slide modified by R. Doemer, 05/25/10)
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Background

 Virtual memory –
complete separation of user logical memory from physical memory.

 Only part of a program needs to be in memory for its execution

 Logical address space can therefore be much larger
than physical address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation
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Virtual Memory That is Larger Than Physical Memory


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Virtual Address Space
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Shared Library Using Virtual Memory
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Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed 

 Faster response

 More users

 Page is needed
 when a CPU instruction references an address in it (e.g. load, store)

 Page Fault

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper –
never swaps a page into memory unless page will be needed

 Swapper that deals with pages is a pager
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Transfer of a Paged Memory to Contiguous Disk Space
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Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v  valid, in-memory, i  invalid, or not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i
 page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table
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Page Table When Some Pages Are Not in Main Memory
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Page Fault

 If a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference  abort

 Just not in memory  goto step 2

2. Get empty frame

3. Swap page into frame

4. Update tables

5. Set valid-invalid bit to v

6. Restart the instruction that caused the page fault
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Steps in Handling a Page Fault

update
page 
tables
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Handling a Page Fault

 Restart instruction:

 sometimes not trivial!

 Special care may need to be taken!

 Example 1: block move instruction where blocks span multiple pages

 Example 2: auto increment/decrement instruction
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Additional Virtual Memory Benefits

 Virtual memory allows other benefits:

- During Process Creation: Copy-on-Write

- Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)
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Copy-on-Write

 Consider parent process forks a child process

 Copy-on-Write (COW) allows both parent and child processes to initially 
share the same pages in memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are 
copied

 Free pages are allocated from a pool of zeroed-out pages
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Copy-on-Write Example

 Before Process 1 Modifies Page C
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Copy-on-Write Example

 After Process 1 Modifies Page C
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Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated
as regular memory access by mapping a disk block to a page in memory.

 A file is initially read using demand paging.

 A page-sized portion of the file is read from the file system into a physical 
memory frame.

 Subsequent reads/writes to/from the file are treated as ordinary memory 
accesses.

 Simplifies file access by treating file I/O as ordinary memory access
rather than read()and write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared
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Memory-Mapped Files
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