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Background

Demand Paging
Copy-on-Write
Memory-Mapped Files
Page Replacement
Allocation of Frames
Thrashing

Allocating Kernel Memory
Other Considerations

Operating-System Examples
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Objectives

m To describe the benefits of a virtual memory system

m To explain the concepts of
e demand paging,
e page-replacement algorithms, and
e allocation of page frames

m  To discuss the principle of the working-set model
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Background

m Virtual memory —
complete separation of user logical memory from physical memory.

e Only part of a program needs to be in memory for its execution

e Logical address space can therefore be much larger
than physical address space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

® Virtual memory can be implemented via:

e Demand paging
e Demand segmentation
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K. Virtual Address Space
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“""}’Shared Library Using Virtual Memory
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Demand Paging

®  Bring a page into memory only when it is needed
e Less /O needed
e Less memory needed
e Faster response
e More users

B Page is needed
= when a CPU instruction references an address in it (e.g. load, store)

B Page Fault
e invalid reference = abort

® not-in-memory = bring to memory

m  Lazy swapper —
never swaps a page into memory unless page will be needed

e Swapper that deals with pages is a pager
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MTransfer of a Paged Memory to Contiguous Disk Space
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Valid-Invalid Bit

m  With each page table entry a valid—invalid bit is associated
(v = valid, in-memory, i = invalid, or not-in-memory)

Initially valid—invalid bit is set to i on all entries
Example of a page table snapshot:

Frame # valid-invalid bit
v
\Y
\
Y
i
i
i
page table
m  During address translation, if valid—invalid bit in page table entry is i

= page fault
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“»Page Table When Some Pages Are Not in Main Memory
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€ Page Fault

m [f a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault
1. Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory = goto step 2
Get empty frame
Swap page into frame
Update tables
Set valid-invalid bit to v
Restart the instruction that caused the page fault
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“$7/ Steps in Handling a Page Fault
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" Handling a Page Fault

B Restart instruction:
e sometimes not trivial!
e Special care may need to be taken!

m  Example 1: block move instruction where blocks span multiple pages

A

m Example 2: auto increment/decrement instruction
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“#7/Additional Virtual Memory Benefits

m  Virtual memory allows other benefits:
- During Process Creation: Copy-on-Write

- Memory-Mapped Files
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gl Copy-on-Write

Consider parent process forks a child process

Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

m If either process modifies a shared page, only then is the page copied

m  COW allows more efficient process creation as only modified pages are
copied

m Free pages are allocated from a pool of zeroed-out pages
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<557 Copy-on-Write Example

m Before Process 1 Modifies Page C
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5 Copy-on-Write Example

m  After Process 1 Modifies Page C
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2 Memory-Mapped Files

m  Memory-mapped file I/O allows file 1/0O to be treated
as regular memory access by mapping a disk block to a page in memory.

m A file is initially read using demand paging.

B A page-sized portion of the file is read from the file system into a physical
memory frame.

B Subsequent reads/writes to/from the file are treated as ordinary memory
accesses.

m  Simplifies file access by treating file /O as ordinary memory access
rather than read(Qand write() system calls

m  Also allows several processes to map the same file
allowing the pages in memory to be shared
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Memory-Mapped Files
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