
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 9: Virtual Memory

(slides improved by R. Doemer, 05/27/10)

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Memory-Mapped Files

 Page Replacement

 Allocation of Frames

 Thrashing

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

(slide modified by R. Doemer, 02/01/11)

2

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of

 demand paging,

 page-replacement algorithms, and

 allocation of page frames

 To discuss the principle of the working-set model

(slide modified by R. Doemer, 05/25/10)

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Virtual memory –
complete separation of user logical memory from physical memory.

 Only part of a program needs to be in memory for its execution

 Logical address space can therefore be much larger
than physical address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

(slide modified by R. Doemer, 05/25/10)

3

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical Memory

9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Address Space

(slide modified by R. Doemer, 05/25/10)

4

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Library Using Virtual Memory

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed
 when a CPU instruction references an address in it (e.g. load, store)

 Page Fault

 invalid reference abort

 not-in-memory bring to memory

 Lazy swapper –
never swaps a page into memory unless page will be needed

 Swapper that deals with pages is a pager

(slide modified by R. Doemer, 05/25/10)

5

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v valid, in-memory, i invalid, or not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i
 page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table

(slide modified by R. Doemer, 05/25/10)

6

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault

 If a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference abort

 Just not in memory goto step 2

2. Get empty frame

3. Swap page into frame

4. Update tables

5. Set valid-invalid bit to v

6. Restart the instruction that caused the page fault

(slide modified by R. Doemer, 05/25/10)

7

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

update
page
tables

(slide modified by R. Doemer, 05/25/10)

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Handling a Page Fault

 Restart instruction:

 sometimes not trivial!

 Special care may need to be taken!

 Example 1: block move instruction where blocks span multiple pages

 Example 2: auto increment/decrement instruction

(slide modified by R. Doemer, 05/25/10)

8

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Additional Virtual Memory Benefits

 Virtual memory allows other benefits:

- During Process Creation: Copy-on-Write

- Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write

 Consider parent process forks a child process

 Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are
copied

 Free pages are allocated from a pool of zeroed-out pages

(slide modified by R. Doemer, 05/25/10)

9

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write Example

 Before Process 1 Modifies Page C

(slide modified by R. Doemer, 05/25/10)

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write Example

 After Process 1 Modifies Page C

(slide modified by R. Doemer, 05/25/10)

10

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated
as regular memory access by mapping a disk block to a page in memory.

 A file is initially read using demand paging.

 A page-sized portion of the file is read from the file system into a physical
memory frame.

 Subsequent reads/writes to/from the file are treated as ordinary memory
accesses.

 Simplifies file access by treating file I/O as ordinary memory access
rather than read()and write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

(slide modified by R. Doemer, 05/25/10)

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)

