Nachos Assignment #1: Build a thread system

Tom Anderson

Computer Science 162
Due date: Tuesday, Sept. 21, 5:00 p.m.

In this assignment, we give you part of a working thread system; your job is
to complete it, and then to use it to solve several synchronization problems.

The first step is to read and understand the partial thread system we have
written for you. This thread system implements thread fork, thread completion,
along with semaphores for synchronization. Run the program ‘nachos’ for a
simple test of our code. Trace the execution path (by hand) for the simple test
case we provide.

When you trace the execution path, it is helpful to keep track of the state
of each thread and which procedures are on each thread’s execution stack. You
will notice that when one thread calls SWITCH, another thread starts running,
and the first thing the new thread does is to return from SWITCH. We realize
this comment will seem cryptic to you at this point, but you will understand
threads once you understand why the SWITCH that gets called is different from
the SWITCH that returns. (Note: because gdb does not understand threads,
you will get bizarre results if you try to trace in gdb across a call to SWITCH.)

The files for this assignment are:

main.cc, threadtest.cc — a simple test of our thread routines.

thread.h, thread.cc — thread data structures and thread operations such as
thread fork, thread sleep and thread finish.

scheduler.h, scheduler.cc — manages the list of threads that are ready to run.

synch.h, synch.cc — synchronization routines: semaphores, locks, and condi-
tion variables.

list.h, list.cc — generic list management (LISP in C4++).

synchlist.h, synchlist.cc — synchronized access to lists using locks and condi-
tion variables (useful as an example of the use of synchronization primi-
tives).

system.h, system.cc — Nachos startup/shutdown routines.
utility.h, utility.cc — some useful definitions and debugging routines.

switch.h, switch.s — assembly language magic for starting up threads and
context switching between them.



interrupt.h, interrupt.cc — manage enabling and disabling interrupts as part
of the machine emulation.

timer.h, timer.cc — emulate a clock that periodically causes an interrupt to
occur.

stats.h — collect interesting statistics.

Properly synchronized code should work no matter what order the scheduler
chooses to run the threads on the ready list. In other words, we should be able
to put a call to Thread::Yield (causing the scheduler to choose another thread
to run) anywhere in your code where interrupts are enabled without changing
the correctness of your code. You will be asked to write properly synchronized
code as part of the later assignments, so understanding how to do this is crucial
to being able to do the project.

To aid you in this, code linked in with Nachos will cause Thread::Yield to
be called on your behalf in a repeatable but unpredictable way. Nachos code 1s
repeatable in that if you call it repeatedly with the same arguments, it will do
exactly the same thing each time. However, if you invoke “nachos -rs #”, with
a different number each time, calls to Thread::Yield will be inserted at different
places in the code.

Make sure to run various test cases against your solutions to these prob-
lems; for instance, for part two, create multiple producers and consumers and
demonstrate that the output can vary, within certain boundaries.

Warning: in our implementation of threads, each thread is assigned a small,
fixed-size execution stack. This may cause bizarre problems (such as segmen-
tation faults at strange lines of code) if you declare large data structures to be
automatic variables (e.g., “int buf[1000];”). You will probably not notice this
during the semester, but if you do, you may change the size of the stack by
modifying the StackSize define in switch.h.

Although the solutions can be written as normal C routines, you will find
organizing your code to be easier if you structure your code as C++ classes.
Also, there should be no busy-waiting in any of your solutions to this assignment.

The assignment is items 1, 2, 5, 6 and 7 listed below.

1. Implement locks and condition variables. You may either use semaphores
as a building block, or you may use more primitive thread routines (such
as Thread::Sleep). We have provided the public interface to locks and
condition variables in synch.h. You need to define the private data and
implement the interface. Note that it should not take you very much code
to implement either locks or condition variables.

2. Implement producer/consumer communication through a bounded buffer,
using locks and condition variables. (A solution to the bounded buffer
problem is described in Silberschatz, Peterson and Galvin, using semaphores.)



The producer places characters from the string ”Hello world” into the
buffer one character at a time; it must wait if the buffer is full. The
consumer pulls characters out of the buffer one at a time and prints them
to the screen; it must wait if the buffer is empty. Test your solution with
a multi-character buffer and with multiple producers and consumers. Of
course, with multiple producers or consumers, the output display will be
gobbledygook; the point is to illustrate

3. The local laundromat has just entered the computer age. As each cus-
tomer enters, he or she puts coins into slots at one of two stations and
types in the number of washing machines he/she will need. The stations
are connected to a central computer that automatically assigns available
machines and outputs tokens that identify the machines to be used. The
customer puts laundry into the machines and inserts each token into the
machine indicated on the token. When a machine finishes its cycle, it
informs the computer that it is available again. The computer maintains
an array available/ NMACHINES] whose elements are non-zero if the cor-
responding machines are available (NMACHINES is a constant indicating
how many machines there are in the laundromat), and a semaphore nfree
that indicates how many machines are available.

The code to allocate and release machines is as follows:

int allocate() /* Returns index of available machine.*/
{

int i;

P(nfree); /* Wait until a machine is available */
for (i=0; i < NMACHINES; i++)
if (available[i] '= 0) {
available[i] = 0;
return i;
}
}

release(int machine) /* Releases machine */
{

available[machine] = 1;

V(nfree);
¥

The available array is initialized to all ones, and nfree is initialized to

NMACHINES.

(a) Tt seems that if two people make requests at the two stations at
the same time, they will occasionally be assigned the same machine.



This has resulted in several brawls in the laundromat, and you have
been called in by the owner to fix the problem. Assume that one
thread handles each customer station. Explain how the same washing
machine can be assigned to two different customers.

(b) Modify the code to eliminate the problem.

(c) Re-write the code to solve the synchronization problem using locks
and condition variables instead of semaphores.

4. Tmplement an “alarm clock” class. Threads call “Alarm::GoToSleepFor(int
howLong)” to go to sleep for a period of time. The alarm clock can
be implemented using the hardware Timer device (cf. timer.h). When
the timer interrupt goes off, the Timer interrupt handler checks to see
if any thread that had been asleep needs to wake up now. There is no
requirement that threads start running immediately after waking up; just
put them on the ready queue after they have waited for the approximately
the right amount of time.

5. You’ve been hired by the University to build a controller for the elevator
in Evans Hall, using semaphores or condition variables. The elevator is
represented as a thread; each student or faculty member is also repre-
sented by a thread. In addition to the elevator manager, you need to
implement the routines called by the arriving student /faculty: “Arriving-
GoingFromTo(int atFloor, int toFloor)”. This should wake up the eleva-
tor, tell it which floor the person is on, and wait until the elevator arrives
before telling it which floor to go to. The elevator is amazingly fast, but
it is not instantaneous — it takes only 100 ticks to go from one floor to
the next. You may find it useful to use your solution for part 4 here. For
simplicity, you can assume there’s only one elevator, and that it holds an
arbitrary number of people. Of course, you should give priority to those
threads going to or departing from the fifth floor :-).

6. You’ve just been hired by Mother Nature to help her out with the chemical
reaction to form water, which she doesn’t seem to be able to get right
due to synchronization problems. The trick is to get two H atoms and
one O atom all together at the same time. The atoms are threads. Each
H atom invokes a procedure hReady when it’s ready to react, and each
O atom invokes a procedure oReady when it’s ready. For this problem,
you are to write the code for hReady and oReady. The procedures must
delay until there are at least two H atoms and one O atom present, and
then one of the procedures must call the procedure make Water (which just
prints out a debug message that water was made). After the make Water
call, two instances of hReady and one instance of oReady should return.
Write the code for hReady and oReady using either semaphores or locks
and condition variables for synchronization. Your solution must avoid
starvation and busy-waiting.



7. You have been hired by Caltrans to synchronize traffic over a narrow light-
duty bridge on a public highway. Traffic may only cross the bridge in one
direction at a time, and if there are ever more than 3 vehicles on the bridge
at one time, it will collapse under their weight. In this system, each car
is represented by one thread, which executes the procedure OneVehicle
when it arrives at the bridge:

OneVehicle(int direc)

{
ArriveBridge(direc);
CrossBridge(direc);
ExitBridge(direc);

}

In the code above, direc is either 0 or 1; it gives the direction in which the
vehicle will cross the bridge.

(a) Write the procedures ArriveBridge and EzitBridge (the CrossBridge
procedure should just print out a debug message), using locks and
condition variables. ArriveBridge must not return until it safe for
the car to cross the bridge in the given direction (it must guarantee
that there will be no head-on collisions or bridge collapses). FErit-
Bridge is called to indicate that the caller has finished crossing the
bridge; ExitBridge should take steps to let additional cars cross the
bridge. This is a lightly-travelled rural bridge, so you do not need to
guarantee fairness or freedom from starvation.

(b) In your solution, if a car arrives while traffic is currently moving in its
direction of travel across the bridge, but there is another car already
waiting to cross in the opposite direction, will the new arrival cross
before the car waiting on the other side, after the car on the other
side, or is it impossible to say? Explain briefly.

8. Implement (non-preemptive) priority scheduling. Modify the thread sched-
uler to always return the highest priority thread. (You will need to create
a new constructor for Thread to take another parameter — the priority
level of the thread; leave the old constructor alone since we’ll need it for
backward compatibility.) You may assume that there are a fixed, small
number of priority levels — for this assignment, you’ll only need two levels.

Can changing the relative priorities of the producers and consumer threads
have any affect on the output? For instance, what happens with two
producers and one consumer, when one of the producers is higher priority
than the other? What if the two producers are at the same priority, but
the consumer is at high priority?

Ut



9. You have been hired to simulate one of the Cal fraternities. Your job is
to write a computer program to pair up men and women as they enter
a Friday night mixer. Each man and each woman will be represented by
one thread. When the man or woman enters the mixer, its thread will
call one of two procedures, man or woman, depending on the sex of the
thread. You must write C code to implement these procedures. Each
procedure takes a single parameter, name, which is just an integer name
for the thread. The procedure must wait until there is an available thread
of the opposite sex, and must then exchange names with this thread. Each
procedure must return the integer name of the thread it paired up with.
Men and women may enter the fraternity in any order, and many threads
may call the man and woman procedures simultaneously. It doesn’t matter
which man is paired up with which woman (Cal frats aren’t very choosy),
as long as each pair contains one man and one woman and each gets the
other’s name. Use semaphores and shared variables to implement the two
procedures. Be sure to give initial values for the semaphores and indicate
which variables are shared between the threads. There must not be any
busy-waiting in your solution.

10. Implement the synchronization for a “lockup-free” cache, using condition
variables. A lockup-free cache is one that can continue to accept requests
even while it is waiting for a response from memory (or equivalently, the
disk). This is useful, for instance, if the processor can pre-fetch data into
the cache before it is needed; this hides memory latency only if it does not
interfere with normal cache accesses.

The behavior of a lockup-free cache can be modelled with threads, where
each thread can ask the cache to read or write the data at some physical
memory location. For a read, if the data is cached, the data can be
immediately returned. If the data is not cached, the cache must (i) kick
something out of the cache to clear space (potentially having to write it
back to physical memory if it is dirty), (ii) ask memory to fetch the item,
and (iii) when the data returns, put it in the cache and return the data
to the original caller. The cache stores data in one unit chunks, so a write
request need not read the location in before over-writing. While memory
is being queried, the cache can accept requests from other threads. Of
course, the cache is fixed size, so it is possible (although unlikely) that all
items in the cache may have been kicked out by earlier requests.

You are to implement the routines CacheRead(addr) and Cache Write(addr,
val); these routines call DiskRead(addr) and DiskWrite(addr, val) on a
cache miss — you can assume these disk operations are already imple-
mented.

11. You have been hired by the CS Division to write code to help synchronize
a professor and his/her students during office hours. The professor, of



12.

13.

14.

course, wants to take a nap if no students are around to ask questions; if
there are students who want to ask questions, they must synchronize with
each other and with the professor so that (i) only one person is speaking
at any one time, (ii) each student question is answered by the professor,
and (iii) no student asks another question before the professor is done
answering the previous one. You are to write four procedures: Answer-
Start(), AnswerDone(), QuestionStart(), and QuestionDone(). The pro-
fessor loops running the code: AnswerStart(); give answer; AnswerDone().
AnswerStart doesn’t return until a question has been asked. Each student
loops running the code: QuestionStart(); ask question; QuestionDone().
QuestionStart() does not return until it is the student’s turn to ask a
question. Since professors consider it rude for a student not to wait for an
answer, QuestionEnd() should not return until the professor has finished
answering the question.

You have been hired by Greenpeace to help the environment. Because
unscrupulous commercial interests have dangerously lowered the whale
population, whales are having synchronization problems in finding a mate.
The trick is that in order to have children, three whales are needed, one
male, one female, and one to play matchmaker — literally, to push the
other two whales together (I'm not making this up!). Your job is to write
the three procedures Male(), Female(), and Matchmaker(). Each whale is
represented by a separate thread. A male whale calls Male(), which waits
until there is a waiting female and matchmaker; similarly, a female whale
must wait until a male whale and a matchmaker are present. Once all
three are present, all three return.

A particular river crossing is shared by both cannibals and missionaries.
A boat is used to cross the river, but it only seats three people, and must
always carry a full load. In order to guarantee the safety of the mission-
aries, you cannot put one missionary and two cannibals in the same boat
(because the cannibals would gang up and eat the missionary), but all
other combinations are legal. You are to write two procedures: Mission-
aryArrives and CannibalArrives, called by a missionary or cannibal when
it arrives at the river bank. The procedures arrange the arriving mission-
aries and cannibals into safe boatloads; once the boat is full, one thread
calls RowBoat and after the call to RowBoat, the three procedures then re-
turn. There should also be no undue waiting: missionaries and cannibals
should not wait if there are enough of them for a safe boatload.

You have been hired by your local bank to solve the safety deposit box
synchronization problem. In order to open a safety deposit box, you need
two keys to be inserted simultaneously, one from the customer and one
from the bank manager. (For those of you who saw Terminator 2, some-
thing like this protected access to the vault containing the Terminator’s



CPU chip.) The customer and the bank manager are threads. You are
to write two procedures: CustomerArrives() and BankManager Arrives().
The procedures must delay until both are present; the customer then calls
OpenDepositBoz(). In addition, the bank manager must wait around un-
til the customer finishes, to lock up the bank vault — in other words, the
bank manager cannot return from BankManagerArrives() until after the
customer has returned from OpenDepositBoz(). The bank manager can
then take a coffee break, while the customer goes off to spend the contents
of the safety deposit box.



