Nachos Assignment #3: Caching: TLB’s and Virtual Memory

Tom Anderson
Computer Science 162

Due date: Thursday, October 28, 5:00 p.m.

The third phase of Nachos is to investigate the use of caching. In this
assignment we use caching for two purposes. First, we use a software-managed
translation lookaside buffer (TLB) as a cache for page tables to provide the
illusion of fast access to virtual page translation over a large address address
space. Second, we use memory as a cache for disk, to provide the abstraction
of an (almost) unlimited virtual memory size, with performance close to that
provided by physical memory. We provide no new code for this assignment (the
only change is that you need to compile with the ”-DVM -DUSE_TLB” flags);
your job is to write the code to manage the TLB and to implement virtual
memory.

Page tables were used in assignment 2 to simplify memory allocation and
to isolate failures from one address space from affecting other programs. For
this assignment, the hardware knows nothing about page tables. Instead it
only deals with a software-loaded cache of page table entries, called the TLB.
On almost all modern processor architectures, a TLB is used to speed address
translation. Given a memory address (an instruction to fetch, or data to load or
store), the processor first looks in the TLB to determine if the mapping of virtual
page to physical page is already known. If so (a TLB “hit”), the translation can
be done quickly. But if the mapping is not in the TLB (a TLB “miss”), page
tables and/or segment tables are used to determine the correct translation. On
several architectures, including Nachos, the DEC MIPS and the HP Snakes, a
“TLB miss” simply causes a trap to the OS kernel, which does the translation,
loads the mapping into the the TLB and re-starts the program. This allows
the OS kernel to choose whatever combination of page table, segment table,
inverted page table, etc., it needs to do the translation. On systems without
software-managed TLB’s, the hardware does the same thing as the software, but
in this case, the hardware must specify the exact format for page and segment
tables. Thus, software managed TLB’s are more flexible, at a cost of being
somewhat slower for handling TLB misses. If TLB misses are very infrequent,
the performance impact of software managed TLB’s can be minimal.

The illusion of unlimited memory is provided by the operating system by
using main memory as a cache for the disk. For this assignment, page translation
allows us the flexibility to get pages from disk as they are needed. Each entry
in the TLB has a valid bit: if the valid bit is set, the virtual page is in memory.
If the valid bit is clear or if the virtual page is not found in the TLB, a software
page table is needed to tell whether the the page is in memory (with the TLB



to be loaded with the translation), or the page must be brought in from disk.
In addition, the hardware sets the use bit in the TLB entry whenever a page is
referenced and the dirty bit whenever the page is modified.

When a program references a page that is not in the TLB, the hardware
generates a TLB exception, trapping to the kernel. The operating system kernel
then checks its own page table. If the page is not in memory, it reads the page in
from disk, sets the page table entry to point to the new page, and then resumes
the execution of the user program. Of course, the kernel must first find space
in memory for the incoming page, potentially writing some other page back to
disk, if it has been modified.

As with any caching system, performance depends on the policy used to
decide which things are kept in memory and which are only stored on disk.
On a page fault, the kernel must decide which page to replace; ideally, it will
throw out a page that will not be referenced for a long time, keeping pages in
memory those that are soon to be referenced. Another consideration is that if
the replaced page has been modified, the page must be first saved to disk before
the needed page can be brought in; many virtual memory systems (such as
UNIX) avoid this extra overhead by writing modified pages to disk in advance,
so that any subsequent page faults can be completed more quickly.

1. Implement software-management of the TLB. For this, you will need to im-
plement some kind of software page translation, for handling TLB misses.
Note that with the compile time flag -DUSE_TLB, the hardware no longer
deals with page tables; thus, you need to do something about making sure
the TLB state is set up properly on a context switch. Most systems sim-
ply invalidate all the TLB entries on a context switch; the entries get
re-loaded as the pages are referenced. For item 2, your page translation
scheme should keep track of the dirty and use flags for each page set by
hardware in the TLB entry (or you could implement a VAX VMS like
scheme).

2. Implement virtual memory. For this, you will need routines to move a page
from disk to memory and from memory to disk. We recommend that you
use the Nachos file system as backing store — this way, when we implement
the file system in assignment 4, we’ll be able to use the virtual memory
system as a test case. In order to find unreferenced pages to throw out on
page faults, you will need to keep track of all of the pages in the system
which are currently in use. A simple way to do this is to keep a “core map”,
which is basically a reverse page table — instead of translating virtual page
numbers to physical pages, a core map translates physical page numbers
to the virtual pages that are stored there.

3. Evaluate the performance of your system. Cache misses (in this case, TLB
misses and page faults) can be divided into three categories.



1. Compulsory misses are those due to the first reference to a cached
item; no matter what, you have to pull each referenced page off disk
and put it into memory and into the TLB.

2. Capacity misses are those due to the size of the cache; if the “working
set” of the program is larger than main memory or the number of
TLB entries, the program will incur misses. Capacity misses are
those that would not occur in an infinite sized cache.

3. Conflict misses are those due to the replacement policy of the cache.
These would not occur if the cache used an “optimal” replacement
policy, for the same program running on the same size cache.

Write a set of “useful” user programs that demonstrate both a small and
large number of each kind of miss, for both the TLB and paging from
disk. In other words, write one test program that that demonstrates a
small number of capacity TLB misses, then one that demonstrates a small
number of capacity page faults, then one that demonstrates a large number
of capacity TLB misses, etc. As an example, both sort.c and matmult.c
in the “test” directory demonstrate a large number of conflict misses for
most standard paging policies.

For each test case, explain its performance on your system, and say how
you might improve the performance of your system.

You will probably find it useful to reduce the size of main memory (in
machine.h), to more quickly incur paging behavior.



