
EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 11

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 2

Lecture 11: Overview

• Course Administration
– Midterm exam: Review and Discussion

– Midterm course evaluation: Results

• Data Structures
– Structures

– Unions

– Enumerators

– Bit fields

– Type definitions



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 2

Course Administration

• Midterm Exam: Review and Discussion
– Overall results are quite satisfactory

• Most show good understanding of C programming

• Some questions appear to be more difficult
– Q17, Q18, Q1, Q2, Q16

• Programming problem seems like a good exercise
– Contents of header files not entirely clear

– Some have problems with Makefile (new topic?!)

– Some need to improve handwriting skills…  ;-)

– MidtermExam_Solution.pdf

– Discussion…

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 3

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 4

Course Administration

• Midterm Course Evaluation: Results
– Participation

• 19 out of 43 students (44.19%)

• Thank you!

– Specific Feedback
• Overall very positive, encouraging

• Suggestions for improvement
– Post lecture slides before lecture

– More examples

– MidtermEvaluation_Report.pdf

– Discussion…



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 3

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 5

Data Structures

• Basic Data Types
– Non-composite types with built-in operators

• Integral types

• Floating point types

• Static Data Structures
– Composite user-defined types with built-in operators

• Arrays

• Structures, bit fields, unions, enumerators

• Dynamic Data Structures
– Composite user-defined types with user-defined operations

• Lists, queues, stacks

• Trees, graphs

• Dictionaries, …

 Pointers!

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 6

Data Structures

• Structures (aka. records): struct
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of members
• Names and types of members are fixed at structure definition

– Member access by name
• Member-access operator: structure_name.member_name

• Example:

struct S { int i; float f;} s1, s2;

s1.i = 42;     /* access to members */
s1.f = 3.1415;
s2 = s1;       /* assignment */
s1.i = s1.i + 2*s2.i;



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 4

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 7

Data Structures

• Structure Declaration
– Declaration of a user-defined data type

• Structure Definition
– Definition of structure members and their type

• Structure Instantiation and Initialization
– Definition of a variable of structure type
– Initializer list defines initial values of members

• Example:
struct Student;          /* declaration */

struct Student           /* definition */
{ int   ID;              /* members */

char  Name[40];
char  Grade;

};

struct Student Jane =    /* instantiation */
{1001, “Jane Doe”, ‘A’}; /* initialization */

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 8

Data Structures

• Structure Access
– Members are accessed by their name
– Member-access operator .

• Example:
struct Student
{  int  ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

void PrintStudent(struct Student s)
{

printf(“ID:    %d\n”, s.ID);
printf(“Name:  %s\n”, s.Name);
printf(“Grade: %c\n”, s.Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID:    1001
Name:  Jane Doe
Grade: A



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 5

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 9

Data Structures

• Unions: union
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of mutually exclusive members
• Names and types of members are fixed at union definition

– Member access by name
• Member-access operator: union_name.member_name

– Only one member may be used at a time!
• All members share the same location in memory!

• Example:

union U { int i; float f;} u1, u2;

u1.i = 42;     /* access to members */
u2.f = 3.1415;
u1.f = u2.f;   /* destroys u1.i! */

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 10

Data Structures

• Union Declaration
– Declaration of a user-defined data type

• Union Definition
– Definition of union members and their type

• Union Instantiation and Initialization
– Definition of a variable of union type
– Single initializer defines value of first member

• Example:
union HeightOfTriangle;  /* declaration */

union HeightOfTriangle   /* definition */
{ int   Height;          /* members */

int   LengthOfSideA;
float AngleBeta;

};

union HeightOfTriangle H /* instantiation */
= { 42 };                /* initialization */



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 6

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 11

Data Structures

• Union Access
– Members are accessed by their name
– Member-access operator .

• Example:
union HeightOfTriangle
{ int   Height;

int   SideA;
float Beta;

};

union HeightOfTriangle t1, t2, t3
= { 42 };

0

t2
Height/
SideA/
Beta

0

t1
Height/
SideA/
Beta

42

t3
Height/
SideA/
Beta

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 12

Data Structures

• Union Access
– Members are accessed by their name
– Member-access operator .

• Example:
union HeightOfTriangle
{ int   Height;

int   SideA;
float Beta;

};

union HeightOfTriangle t1, t2, t3
= { 42 };

void SetHeight(void)
{

t1.Height = 10;
t2.SideA = t1.Height / 2;
t3.Beta = 90.0;

}

5

t2
Height/
SideA/
Beta

10

t1
Height/
SideA/
Beta

90.0

t3
Height/
SideA/
Beta



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 7

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 13

Data Structures

• Enumerators: enum
– User-defined data type

• Members are an enumeration of integral constants

– Fixed set of members
• Names and values of members are fixed at enumerator definition

– Members are constants
• Member values cannot be changed after definition

• Example:
enum E { red, yellow, green };
enum E LightNS, LightEW;

LightEW = green;       /* assignment */
if (LightNS == green)  /* comparison */

{ LightEW = red; }

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 14

Data Structures

• Enumerator Declaration
– Declaration of a user-defined data type

• Enumerator Definition
– Definition of enumerator members and their value

• Enumerator Instantiation and Initialization
– Definition of a variable of enumerator type
– Initializer should be one member of the enumerator

• Example:
enum Weekday;            /* declaration */

enum Weekday             /* definition */
{ Monday, Tuesday,       /* members */

Wednesday, Thursday,
Friday, Saturday, Sunday

};

enum Weekday Today       /* instantiation */
= Wednesday;             /* initialization */



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 8

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 15

Data Structures

• Enumerator Values
– Enumerator values are

integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

–

• Example:

enum Weekday
{ Monday,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

enum Weekday Today
= Wednesday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Wednesday

Today

Day: 2

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 16

Data Structures

• Enumerator Values
– Enumerator values are

integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

– Specific enumerator values
may be defined by the user

• Example:

enum Weekday
{ Monday = 1,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

enum Weekday Today
= Wednesday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Wednesday

Today

Day: 3



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 9

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 17

Data Structures

• Enumerator Values
– Enumerator values are

integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

– Specific enumerator values
may be defined by the user

• Example:

enum Weekday
{ Monday = 2,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday = 1

};

enum Weekday Today
= Wednesday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Wednesday

Today

Day: 4

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 18

Data Structures

• Bit fields: Packing a few bits into a machine word
– User-defined, composite data type

• Type is a structure of sub-word-length bit fields (small integers)

– Fixed set of members
• Names and size of bit fields are fixed at bit field definition

– Member access by name
• Member-access operator: structure_name.bitfield_name

• Example: struct FontAttribute {
unsigned int IsItalic :  1;
unsigned int IsBold :  1;
int /* padding */     :  0;
unsigned int Size     : 12;
} Style;
Style.IsItalic = 0;
Style.IsBold = 1;
Style.Size = 600;



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 10

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 19

Data Structures

• Bit fields: Packing a few bits into a machine word
– Examples for usage:

• Flags: Set of single bits indicating a condition, property, or attribute

• Device registers (e.g. CPU status, or UART I/O register)

• Packing of small integers (e.g. floating-point representation)

– Advantages
• Convenient access

• Better readability
– As compared to using bit-wise operators, shifting, and bit constants

– Portability:
• The layout of bit fields in memory is implementation defined!

• Position of bits in memory depends on
– Compiler (bit packing strategy, loose or tight)

– Byte-order of target machine (big vs. little endian)

– Machine word width

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 20

Data Structures

• Bit Fields Example: Bitfield.c
/* Bitfield.c: 11/06/12, RD */

#include <stdio.h>

struct FloatFormat {
unsigned int Mantissa : 23;
unsigned int Exponent :  8;
unsigned int Sign     :  1;

};
union FloatUnion {
float              Value;
struct FloatFormat Format;

} Float = { -1.0 };

int main(void)
{ printf("sizeof(float) = %lu\n", sizeof(float));
printf("sizeof(Float) = %lu\n", sizeof(Float));
printf("Float.Value = %f\n", Float.Value);
printf("Float.Format.Sign = %u\n", Float.Format.Sign);
printf("Float.Format.Exponent = %u\n", Float.Format.Exponent);
printf("Float.Format.Mantissa = %u\n", Float.Format.Mantissa);
return 0;

}



EECS22: Advanced C Programming Lecture 11

(c) 2012 R. Doemer 11

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 21

Data Structures

• Bit Fields Example: Bitfield.c
% gcc Bitfield.c –o Bitfield -Wall –ansi
% ./Bitfield
sizeof(float) = 4
sizeof(Float) = 4
Float.Value = -1.000000
Float.Format.Sign = 1
Float.Format.Exponent = 127
Float.Format.Mantissa = 0
%

EECS22: Advanced C Programming, Lecture 11 (c) 2012 R. Doemer 22

Data Structures

• Type definitions: typedef
– A type definition creates an alias type name for another type

– A type definition uses the same syntax as a variable definition
• Syntactically, typedef is a storage class!

– Type definitions are often used…
• as common type name used in several places in the code

• as shortcut for composite user-defined types (objects)

• Examples:
typedef unsigned long UInt64;   /* 64-bit type */

typedef struct Student Scholar; /* shortcut */
Scholar Jane, John;

typedef struct Image            /* digital image type */
{ unsigned int Width, Height;

unsigned char R[], G[], B[];
} IMAGE;


