
EECS 22: Assignment 2

Prepared by: Weiwei Chen, Prof. Rainer Doemer

October 2, 2012

Due on Monday 10/22/2012 11:59pm. Note: this is a two-week assignment.

1 Digital Image Processing [100 points + 10 bonus points]
In this assignment you will learn some basic digital image processing (DIP) techniques by developing an image
manipulation program called PhotoLab. Using the PhotoLab, the user can load an image from a file, apply a set of
DIP operations to the image, and save the processed image in a file.

1.1 Introduction
A digital image is essentially a two-dimensional matrix, which can be represented in C by a two-dimensional array
of pixels. A pixel is the smallest unit of an image. The color of each pixel is composed of three primary colors, red,
green, and blue; each color is represented by an intensity value between 0 and 255. In this assignment, you will work
on images with a fixed size, 720×538, and type, Portable Pixel Map (PPM).

The structure of a PPM file consists of two parts, a header and image data. In the header, the first line specifies the
type of the image, P6; the next line shows the width and height of the image; the last line is the maximum intensity
value. After the header follows the image data, arranged as RGBRGBRGB..., pixel by pixel in binary representation.

Here is an example of a PPM image file:

P6
720 538
255
RGBRGBRGB...

1.2 Initial Setup
Before you start working on the assignment, do the following:

cd ˜/eecs22
mkdir hw2
cd hw2
cp ˜eecs22/hw2/PhotoLab.c .
cp ˜eecs22/hw2/ucisailing.ppm .

NOTE: Please execute the above setup commands only ONCE before you start working on the assignment! Do not
execute them after you start the implementation, otherwise your code will be overwritten!

The file PhotoLab.c is the template file where you get started. It provides the functions for image file reading and
saving, test automation as well as the DIP function prototypes and some variables (do not change those function
prototypes or variable definitions). You are free to add more variables and functions to the program.
The files ucisailing.ppm is the PPM images that we will use to test the DIP operations. Once a DIP operation is done,
you can save the modified image. You will be prompted for a name of the image. The saved image name.ppm will be

1

automatically converted to a JPEG image and sent to the folder public html in your home directory. You are then able
to see the image in a web browser at: http://newport.eecs.uci.edu/∼youruserid, if required names are used(i.e. ’bw’,
’negative’, ’hflip’, ’hmirror’, ’border’, ’vflip’, ’vmirror’ for each corresponding function). If you save images by other
names, use the link http://newport.eecs.uci.edu/∼youruserid/imagename.jpg to access the photo.

Note that whatever you put in the public html directory will be publicly accessible; make sure you don’t put files there
that you don’t want to share, i.e. do not put your source code into that directory.

1.3 Program Specification
In this assignment, your program should be able to read and save image files. To let you concentrate on DIP operations,
the functions for file reading and saving are provided. These functions are able to catch many file reading and saving
errors, and show corresponding error messages.

Your program is a menu driven program. The user should be able to select DIP operations from a menu as the one
shown below:

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Note: options ’ 7: Flip an image vertically’ and ’8: Mirror an image vertically’ are bonus questions (5 pts each). If
you decide to skip these two options, you still need to implement the option ’9: Test all functions’.

1.3.1 Load a PPM Image

This option prompts the user for the name of an image file. You don’t have to implement a file reading function; just
use the provided one, ReadImage. Once option 1 is selected, the following should be shown:

Please input the file name to load: ucisailing

After a name, for example ucisailing, is entered, the PhotoLab will load the file ucisailing.ppm. Note that, in this
assignment please always enter file names without the extension when you load or save a file (i.e. enter ’ucisailing’,
instead of ’ucisailing.ppm’). If it is read correctly, the following is shown:

Please make your choice: 1
Please input the file name to load: ucisailing
ucisailing.ppm was read successfully!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally

2

7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Then, you can select other options. If there is a reading error, for example the file name is entered incorrectly or the
file does not exist, the following message is shown:

Cannot open file "ucisailing.ppm.ppm" for reading!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

In this case, try option 1 again with the correct filename.

1.3.2 Save a PPM Image

This option prompts the user for the name of the target image file. You don’t have to implement a file saving function;
just use the provided one, SaveImage. Once option 2 is selected, the following is shown:

Please make your choice: 2
Please input the file name to save: bw
bw.ppm was saved successfully.
bw.jpg was stored for viewing.

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

The saved image will be automatically converted to a JPEG image and sent to the folder public html. You then are able
to see the image at: http://newport.eecs.uci.edu/∼youruserid (For off campus, the link is: http://newport.eecs.uci.edu/∼youruserid/imagename.jpg)

3

(a) Color image (b) Black and white image

Figure 1: A color image and its black and white counterpart.

1.3.3 Change a Color Image to Black and White

A black and white image is the one that the intensity values are the same for all color channels, red, green, and blue, at
each pixel. To change a color image to grey, assign a new intensity, which is given by (R+G+B)/3, to all the color
channels at a pixel. The R,G,B are the old intensity values for the red, the green, and the blue channels at the pixel.
You need to define and implement the following function to do the job.

/* change color image to black and white */
void BlackNWhite(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Figure 1 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 3
"Black & White" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Save the image with name ’bw’ after this step.

1.3.4 Make a negative of an image

A negative image is an image in which all the intensity values have been inverted. To achieve this, each intensity value
at a pixel is subtracted from the maximum value, 255, and the result is assigned to the pixel as a new intensity. You
need to define and implement a function to do the job.
You need to define and implement the following function to do this DIP.

4

(a) Original image (b) Negative image

Figure 2: An image and its negative counterpart.

/* reverse image color */
void Negative(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

Figure 2 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 4
"Negative" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Save the image with name ’negative’ after this step.

1.3.5 Flip Image Horizontally

To flip an image horizontally, the intensity values in horizontal direction should be reversed. The following shows an
example.

1 2 3 4 5 5 4 3 2 1
before horizontal flip: 0 1 2 3 4 after horizontal flip: 4 3 2 1 0

3 4 5 6 7 7 6 5 4 3

You need to define and implement the following function to do this DIP.

5

(a) Original image (b) Horizontally flipped image

Figure 3: An image and its horizontally flipped counterpart.

/* flip image horizontally */
void HFlip(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Figure 3 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 5
"HFlip" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Save the image with name ’hflip’ after this step.

1.3.6 Mirror Image Horizontally

To mirror an image horizontally, the intensity values in horizontal direction on the right side should be reversed and
copied to the left side. The following shows an example.

1 2 3 4 5 1 2 3 2 1
before horizontal mirror:4 3 2 1 0 after horizontal mirror:4 3 2 3 4

3 4 5 6 7 3 4 5 4 3

You need to define and implement the following function to do this DIP.

6

(a) Original image (b) Horizontally mirrored image

Figure 4: An image and its horizontally mirrored counterpart.

/* mirror image horizontally */
void HMirror(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Figure 4 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 6
"HMirror" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Save the image with name ’hmirror’ after this step.

1.3.7 Add borders to an image (bonus points: 10pts)

This operation will add borders to the current image. The border color and width (in pixels) of the borders are param-
eters given by users. Figure 5 shows an example of adding borders to an image.

You need to define and implement the following function to do this DIP.

/* add a border to the image */
void AddBorder(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT], int r, int g, int b, int bwidth);

7

(a) Original image (b) Image with borders, border color = grey, width = 10
pixels

Figure 5: An image and its counterpart when borders are added.

Once user chooses this option, your program’s output should be like:

Please make your choice: 7
Enter the R value of the border color(0 to 255): 128
Enter the G value of the border color(0 to 255): 128
Enter the B value of the border color(0 to 255): 128
Enter the width of the border: 10
"Add Border" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Save the image with name ’border’ after this step.

1.3.8 Flip Image Vertically (bonus points: 5 pts)

To flip an image vertically, the intensity values in vertical direction should be reversed. The following shows an
example.

1 2 3 4 5 3 4 5 6 7
before vertical flip: 0 1 2 3 4 after vertical flip: 0 1 2 3 4

3 4 5 6 7 1 2 3 4 5

You need to define and implement the following function to do this DIP.

/* flip image vertically */

8

(a) Original image (b) Vertically flipped image

Figure 6: An image and its vertically flipped counterpart.

void VFlip(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Figure 6 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 8
"VFlip" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Save the image with name ’vflip’ after this step.

1.3.9 Mirror Image Vertically (bonus points: 5 pts)

To mirror an image vertically, the intensity values in horizontal direction at the bottom should be reversed and copied
to the top. The following shows an example.

1 2 3 4 5 1 2 3 2 1
before horizontal mirror:4 3 2 1 0 after horizontal mirror:4 3 2 1 0

3 4 5 6 7 1 2 3 2 1

You need to define and implement the following function to do this DIP.

/* mirror image vertically */

9

(a) Original image (b) Vertically mirrored image

Figure 7: An image and its vertically mirrored counterpart.

void VMirror(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Figure 7 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 9
"VMirror" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Add border to an image
8: Flip an image vertically (5 bonus points)
9: Mirror an image vertically (5 bonus points)

10: Test all functions
11: Exit
please make your choice:

Save the image with name ’vmirror’ after this step.

1.3.10 Test all functions

Finally, you are going to write a function to test all previous functions. In this function, you are going to call DIP
functions one by one and to observe the results. The function is for the designer to quickly test the program, so you
should supply all necessary parameters when testing. The function should look like:

void AutoTest(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT])

{
char fname[SLEN] = "ucisailing";
char sname[SLEN];

10

ReadImage(fname, R, G, B);
BlackNWhite(R, G, B);
strcpy(sname, "bw");/*string copy function to prepare the file name to be saved*/
SaveImage(sname, R, G, B);
printf("Black & White tested!\n\n");

...

...
ReadImage(fname, R, G, B);
HMirror(R, G, B);
strcpy(sname, "hmirror");
SaveImage(sname, R, G, B);
printf("HMirror tested!\n\n");

...
}

Once user chooses this option, your program’s output should be like:

Please make your choice: 10

ucisailing.ppm was read successfully!
bw.ppm was saved successfully.
bw.jpg was stored for viewing.
Black & White tested!

ucisailing.ppm was read successfully!
"Negative" operation is done!
negative.ppm was saved successfully.
negative.jpg was stored for viewing.
Negative tested!

...

...

1.4 Implementation
1.4.1 Function Prototypes

For this assignment, you need to define the following functions (those function prototypes are already provided in
PhotoLab.c. Please do not change them):

/*** function declarations ***/
/* print a menu */
void PrintMenu();

/* read image from a file */
int ReadImage(char fname[SLEN], unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* save a processed image */
int SaveImage(char fname[SLEN], unsigned char R[WIDTH][HEIGHT],

11

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* change color image to black & white */
void BlackNWhite(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

/* reverse image color */
void Negative(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

/* flip image horizontally */
void HFlip(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

/* mirror image horizontally */
void HMirror(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

/* add a border to the image */
void AddBorder(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT], int r, int g, int b, int bwidth);

/* flip image vertically */
void VFlip(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

/* mirror image vertically */
void VMirror(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

/* Test all functions */
void AutoTest(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

You may want to define other functions as needed.

1.4.2 Global constants

You also need the following global constants (they are also declared in PhotoLab.c, please don’t change their names):

#define WIDTH 720 /* Image width */
#define HEIGHT 538 /* image height */
#define SLEN 80 /* maximum length of file names */

1.4.3 Pass in arrays by reference

In the main function, three two-dimensional arrays are defined. They are used to save the RGB information for the
current image:

int main()
{
unsigned char R[WIDTH][HEIGHT]; /* for image data */
unsigned char G[WIDTH][HEIGHT];

12

unsigned char B[WIDTH][HEIGHT];
}

When any of the DIP operations is called in the main function, those three arrays: R[WIDTH][HEIGHT], G[WIDTH][HEIGHT],
B[WIDTH][HEIGHT] are the parameters passed into the DIP functions. Since arrays are passed by reference, any
changes to R[][], G[][], B[][] in the DIP functions will be applied to those variables in the main function. In this
way, the current image can be updated by DIP functions without defining global variables.

In your DIP function implementation, there are two ways to save the target image information in R[][], G[][], B[][].
Both options work and you should decide which option is better based on the specific DIP manipulation function at
hand.

Option 1: using local variables You can define local variables to save the target image information. For example:

void DIP_function_name()
{
unsigned char RT[WIDTH][HEIGHT]; /* for target image data */
unsigned char GT[WIDTH][HEIGHT];
unsigned char BT[WIDTH][HEIGHT];
}

Then, at the end of each DIP function implementation, you should copy the data in RT[][], GT[][], BT[][] over to
R[][], G[][], B[][].

Option 2: in place manipulation Sometimes you do not have to create new local array variables to save the target
image information. Instead, you can just manipulate on R[][], G[][], B[][] directly. For example, in the implemen-
tation of Negative() function, you can assign the result of 255 minus each pixel value directly back to this pixel entry.

2 Script File
To demonstrate that your program works correctly, perform the following steps and submit the log as your script file:

1. Start the script by typing the command: script

2. Compile and run your program

3. Choose ’Test all functions’ (The file names must be ’bw’, ’negative’, ’hflip’, ’hmirror’, ’border’, ’vflip’, ’vmir-
ror’ for the corresponding function)

4. Exit the program

5. Stop the script by typing the command: exit

6. Rename the script file to PhotoLab.script

NOTE: make sure use exactly the same names as shown in the above steps when saving modified images! The script
file is important, and will be checked in grading; you must follow the above steps to create the script file.

3 Submission
Use the standard submission procedure to submit the following files:

• PhotoLab.c (with your code filled in!)

• PhotoLab.script

Please leave the images generated by your program in your public html directory. Don’t delete them as we may
consider them when grading! You don’t have to submit any images.

13

	Digital Image Processing [100 points + 10 bonus points]
	Introduction
	 Initial Setup
	Program Specification
	Load a PPM Image
	Save a PPM Image
	 Change a Color Image to Black and White
	 Make a negative of an image
	 Flip Image Horizontally
	 Mirror Image Horizontally
	 Add borders to an image (bonus points: 10pts)
	 Flip Image Vertically (bonus points: 5 pts)
	 Mirror Image Vertically (bonus points: 5 pts)
	Test all functions

	 Implementation
	 Function Prototypes
	 Global constants
	 Pass in arrays by reference

	 Script File
	Submission

