
EECS 22: Assignment 5

Prepared by: Weiwei Chen, Prof. Rainer Doemer

November 15, 2012

Due on Monday 12/03/2012 11:59pm. Note: this is a two-week assignment.

1 MovieLab [100 points + 10 bonus points]
In this assignment you will learn how to design a program to take command-line arguments and how to design a linked
list.

The program, MovieLab will be developed to perform digital image processing (DIP) operations on a input movie
stream.

A movie is basically a sequence of images with the same size. You will be asked to design a linked list for images
to represent a movie in your program, generate the frames of the movie, and then use the DIP operation functions
designed in the previous assignments to perform DIP operations onto the images in the movie.

1.1 Introduction
A movie is basically a sequence of images with different contents but same fixed size. Play a movie is actually to show
the images one after another at a certain rate, i.e. fps (frames per second). Each image in the movie is the same as
what we’ve learned in the previous assignments. It is essentially a two-dimensional matrix, which can be represented
in C by an array of pixels. A pixel is still the smallest unit of an image.

In this assignment, you will work on a movie with fixed number of frames (141) and resolution (352× 288 pix-
els/frame). The color space of the images in the movie is YUV (http://en.wikipedia.org/wiki/YUV)
instead of RGB.

However, the color of each pixel is still represented by 3 components, now Y channel, U channel and V channel. Here,
Y channel represents the luminance of the color, while U channel and V channel represent the chrominance of the
color. Each channel for one pixel is still represented by an intensity value between 0 and 255. In order to utilize the
DIP functions that handles the images using the RGB color space, conversion is needed to change the YUV 3-tuple
into RGB tuple for each pixel (Section 1.3.3). The YUV color space is very common for video streams. Our input
and output file will both use the YUV color space.

1.2 Initial Setup
Before you start working on this assignment, please do the following steps:

1. Create the subdirectory hw5 for this assignment, and change your current directory to hw5.

2. We will reuse some of the source code files from our previous assignments. Please feel free to reuse any of your
designs, or reuse the solution files to the previous assignments which are posted on our course website. The files
we will reuse are DIPs.c and DIPs.h. Copy these two files to hw5.

3. Copy the provided files from the eecs22 account on the ladera server.

1

http://en.wikipedia.org/wiki/YUV

cp ˜eecs22/hw5/Image.c ./
cp ˜eecs22/hw5/Image.h ./
cp ˜eecs22/hw5/MovieLab.c ./

Here,

• Image.h is the header file for the definition of the structure and declarations of the pixel mapping functions
we’ve been using for assignment4. The name of the structure members are changed for representing images
using different color spaces (RGB and YUV);

• Image.c is the modified source code file for Image.h (will be available after the deadline of assignment4);

• MovieLab.c is the template file with sample code for command-line argument parsing, and the basic file
I/O functions.

4. Create a symbol link to the input movie stream file from the eecs22 account on the ladera server.

ln -s ˜eecs22/hw5/bird.yuv

bird.yuv here is symbolic link to the input movie stream in our eecs22 account. Since we have space limitation
for each account on ladera.eecs.uci.edu, it is helpful to save disk space for each account by sharing the read-only
input file.

We will use the bird.yuv file as the test input stream for this assignment. Once a movie image operation is done, you
can save the output image as name.yuv in your working directory by using the “-o” option.

You will need a YUV player to view the movie files. The YUV player requires you to have X window support on
your own machine where you use either PuTTY (Windows user) or Terminal (Mac User) to remote login the Linux
server. For Mac user, your system has the X window support installed. Please remember to add the “-X” option
while using the “ssh” command. For windows users, you need to install the X server first and set the configu-
rations of PuTTY with proper X11 forwarding. A free X server, Xming, for Windows system is available from
http://sourceforge.net/projects/xming/. The detailed instructions on PuTTY configuration is avail-
able from https://eee.uci.edu/toolbox/messageboard/m11480/f31314/t361907/p643529/.

With the X server running properly with your remote login software, you can use the following command to play your
movie files (.yuv):

cd hw5
˜eecs22/bin/yay -s widthxheight -f 1 yourfilename.yuv

Specifically, you can play the input movie stream by using:

˜eecs22/bin/yay -s 352x288 -f 1 bird.yuv

1.3 Design the MovieLab Program
In this assignment, we will design the movie representation in a C program.

1.3.1 The Image.c module (provided)

In assignment4, we designed the Image.c module for the basic functions of an image. A struct IMAGE is defined for
the pixels in the RGB format. Image creation and deletion functions and basic pixel color getting and setting functions
are defined accordingly.

Since the data structure for the YUV format is almost the same as the RGB format. We will reuse the Image.c module
from assignment4. In order to represent the different color representations better, we rename the pointer member
variables for IMAGE. Now the structure IMAGE and the function signatures look like:

2

http://sourceforge.net/projects/xming/
https://eee.uci.edu/toolbox/messageboard/m11480/f31314/t361907/p643529/

typedef struct {
unsigned int Width; /* image width */
unsigned int Height; /* image height */
unsigned char *R_Y; /* pointer to the memory storing all the R or Y intensity values */
unsigned char *G_U; /* pointer to the memory storing all the G or U intensity values */
unsigned char *B_V; /* pointer to the memory storing all the B or V intensity values */
}IMAGE;

/*Get the color intensity of the Red channel of pixel (x, y) in image */
unsigned char GetRPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Get the color intensity of the Green channel of pixel (x, y) in image */
unsigned char GetGPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Get the color intensity of the Blue channel of pixel (x, y) in image */
unsigned char GetBPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Set the color intensity of the Red channel of pixel (x, y) in image with value r */
void SetRPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char r);

/*Set the color intensity of the Green channel of pixel (x, y) in image with value g */
void SetGPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char g);

/*Set the color intensity of the Blue channel of pixel (x, y) in image with value b */
void SetBPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char b);

/* allocate the memory spaces for the image */
/* and the memory spaces for the color intensity values. */
/* return the pointer to the image */
IMAGE *CreateImage(unsigned int Width, unsigned int Height);

/*release the memory spaces for the pixel color intensity values */
/*release the memory spaces for the image */
void DeleteImage(IMAGE *image);

/*Get the color intensity of the Y channel of pixel (x, y) in image */
#define GetYPixel GetRPixel

/*Get the color intensity of the U channel of pixel (x, y) in image */
#define GetUPixel GetGPixel

/*Get the color intensity of the V channel of pixel (x, y) in image */
#define GetVPixel GetBPixel

/*Set the color intensity of the Y channel of pixel (x, y) in image */
#define SetYPixel SetRPixel

/*Set the color intensity of the U channel of pixel (x, y) in image */
#define SetUPixel SetGPixel

/*Set the color intensity of the V channel of pixel (x, y) in image */
#define SetVPixel SetBPixel

3

1.3.2 The ImageList.c module

We are going to design a double-linked list to store the frames (images) for a movie and keep them in the correct order.

As discussed in lecture 14, a double-linked list is a linked data structure that consists of a set of sequentially linked
records called entries. Each entry contains two fields, called links, that are references to the previous (Prev) and to the
next (Next) entry in the sequence of entries. The first (First) and last (Last) entries’ Prev and Next links, respectively,
point to a terminator, NULL, to facilitate traversal of the list.

Please add one module ImageList.c (ImageList.h) to your MovieLab program.

In this module please define the following two structures:

• The structure for the image list entry IENTRY:

typedef struct ImageEntry IENTRY;

struct ImageEntry
{

ILIST *List; /* pointer to the list which this entry belongs to */
IENTRY *Next; /* pointer to the next entry, or NULL */
IENTRY *Prev; /* pointer to the previous entry, or NULL */
IMAGE *Image; /* pointer to the struct for the image */

};

• The structure for the image list ILIST:

typedef struct ImageList ILIST;

struct ImageList
{

unsigned int Length; /* Length of the list */
IENTRY *First; /* pointer to the first entry, or NULL */
IENTRY *Last; /* pointer to the last entry, or NULL */

};

In the same module, please define the following double-linked list functions:

/* allocate a new image list */
ILIST *NewImageList(void);

/* delete a image list (and all entries) */
void DeleteImageList(ILIST *l);

/* insert a student into a list */
void AppendImage(ILIST *l, IMAGE *image);

/* reverse an image list */
void ReverseImageList(ILIST *l);

Note: Please refer to the slides of lecture 14 for the implementation of double-linked list.

1.3.3 The Movie.c module

Please add one module Movie.c (Movie.h) to handle basic operations on the movie.

4

• The MOVIE struct: We will use a struct type to aggregate all the information of one movie. Please define the
following struct in Movie.h:

/* the structure for MOVIE */
typedef struct{

ILIST *Frames; /* the pointer to the frame list */
unsigned int Width; /* movie frame width */
unsigned int Height; /* movie frame height */
unsigned int NumFrames; /* total number of frames */

}MOVIE;

• Define the following functions for basic movie operations. Please use the following function prototypes (in
Movie.h) and define the functions properly (in Movie.c)

/* allocate the memory space for the movie */
/* and the memory space for the frame list. */
/* return the pointer to the movie */
MOVIE *CreateMovie(unsigned int nFrames, unsigned int W, unsigned int H);

/*release the memory space for the frames and the frame list. */
/*release the memory space for the movie. */
void DeleteMovie(MOVIE *movie);

/* convert the YUV image into the RGB image */
void YUV2RGBImage(IMAGE *YUVImage, IMAGE *RGBImage);

/* convert the RGB image into the YUV image */
void RGB2YUVImage(IMAGE *RGBImage, IMAGE *YUVImage);

• Conversion between YUV and RGB:
The conversion between YUV pixel formats (used by the image and movie compression methods) and RGB
format (used by many hardware manufacturers) can be done by the following formulas. They show how to
compute a pixel’s value in one format from the pixel value in the other format.

Please using the following equations for the YUV2RGBImage and RGB2YUVImage functions.

– Conversion from RGB to YUV:
Y = ((66∗R+129∗G+25∗B+128)>> 8)+16
U = ((−38∗R−74∗G+112∗B+128)>> 8)+128
V = ((112∗R−94∗G−18∗B+128)>> 8)+128

– Conversion from YUV to RGB:
C = Y −16
D =U−128
E =V −128
R = clip((298∗C+409∗E +128)>> 8)
G = clip((298∗C−100∗D−208∗E +128)>> 8)
B = clip((298∗C+516∗D+128)>> 8)

Here, clip() denotes clipping a value to the range of 0 to 255.
More specifically,
clip(x) = x, if 0≤ x≤ 255;
clip(x) = 0, if x≤ 0;
clip(x) = 255, if x≥ 255.
NOTE: please use type int for the variables for the calculation.

5

1.3.4 The MovieLab.c module

Extend the MovieLab.c template module as the top module of the MovieLab program.

• Support for command-line arguments:
The C language provides a method to pass arguments to the main() function. This is typically accomplished by
specifying arguments on the operating system command line (console).

The prototype for main() looks like:

int main(int argc, char *argv[])
{

...
}

There are two parameters for the main() function. The first parameter is the number of items on the command
line (int argc). Each argument on the command line is separated by one or more spaces, and the operating system
places each argument directly into its own null-terminated string. The second parameter of main() is an array of
pointers to the character strings containing each argument (char *argv[]).

Please add command-line argument support for the MovieLab.c program.

The following options should be supported:

– -i: provide the input file name

– -o: provide the output file name

– -f: determine how many frames desired in the input stream

– -s: resolution of the input stream

– -m: create a movie with Mandelbrot zoom sequence

– -bw: activate the conversion to black and white

– -n: activate the conversion to negative

– -hf: activate horizontal flip

– -vf: activate vertical flip

– -rvs: reverse the frame order of the input stream

– -h: show this usage information

The MovieLab.c template file contains the sample code for the support of “-i”, “-o” and “-h” options. Please
extend the code accordingly to support the rest of the options.

NOTE: The MovieLab program will only perform one operation a time. If the user gives more than one option
among “-h”, -m, “-bw”, “-n”, “-hf”, “-vf” and “-rvs”, please just perform the one with the highest priority.
The option priority from high to low is: “-h”, -m, “-bw”, “-n”, “-hf”, “-vf” and “-rvs”.

The “-i”, “-o”, “-f”, “-s” options are mandatory to MovieLab with two exceptions:

1. the user just wants to see the usage information (option “-h”)

2. the user wants to create the movie (option “-m”), then option “-i” is not mandatory.

Please show proper warning messages and terminate the execution of MovieLab if any of the options is missing
as the command-line argument.

In order to get two integer values for the “-s” option, please use the following piece of code: (assume that the
ith command-line argument contains these two values)

6

unsigned int W, H;
if(sscanf(argv[i], "%dx%d", &W, &H) == 2){

/* input is correct */
/* the width is stored in W */
/* the height is stored in H */

}
else{

/*input format error*/
}

If we run the MovieLab with the “-h” option, we will have:

% ./MovieLab -h

Format on command line is:
MovieLab -i input_file_name -o output_file_name -f number_of_frames

-s widthxheight -h|-m|-bw|-n|-hf|-vf|-rvs
-i to provide the input file name
-o to provide the output file name
-f to determine how many frames desired in the input stream
-s to resolution of the input stream (widthxheight)
-m to generate the movie with Mandelbrot zoom sequence
-bw to activate the conversion to black and white
-n to activate the conversion to negative
-hf to activate horizontal flip
-vf to activate vertical flip
-rvs to reverse the frame order of the input stream
-h to show this usage information

Otherwise, we need to run the MovieLab with proper information for the movie and operation options, e.g:

% ./MovieLab -i bird -o out -f 141 -s 352x288 -bw
The movie file bird.yuv has been read successfully!
Operation BlackNWhite is done!
The movie file out.yuv has been written successfully!

• Read and write movie files

We have the file I/Os functions defined in MovieLab.c module.

The function signatures for the file I/Os functions are:

– int ReadOneFrame(const char* fname, int nFrame, unsigned int W, unsigned int H, IMAGE *frame):
(already defined in the template file MovieLab.c)
reads the file with name fname.yuv, and load the color intensities for channel Y, U and V of the nFrameth
frame into the memory spaces pointed by frame→R Y, frame→G U and frame→B V.

– int SaveMovie(const char *fname, MOVIE *movie): (already defined in the template file MovieLab.c)
opens the movie file with name fname.yuv, and stores the frames of the movie to fname.yuv.

– int ReadMovie(const char *fname, int nFrame, unsigned int W, unsigned int H, MOVIE *movie):
(to be defined)
reads the file with name fname.yuv, and load the frames of this movie file. Please call ReadOneFrame()
and AppendImage() function to implement this function.

7

(a) image #1 (b) image #2 (c) image #3 (d) image #4

(e) image #5 (f) image #6 (g) image #7 (h) image #8

(i) image #9 (j) image #10 (k) image #11 (l) image #12

Figure 1: The first 12 images in the Mandelbrot zoom sequence where the zoom ratio is 0.7

For ReadOneFrame() and ReadMovie() function, you need to allocate the memory space to the image and movie
before you call this function to get the content of the input movie file. At the end of your program, you need to
free these memory spaces to avoid memory leakage.

• Create the movie with Mandelbrot zoom sequence: Instead of reading an existing movie, we will also add the
function to create a movie to show the Mandelbrot zoom sequence.

As indicated in http://en.wikipedia.org/wiki/Mandelbrot_set, the Mandelbrot set shows more
intricate detail the closer one looks or magnifies the image, usually called ”zooming in”. Fig. 1 shows the first
twelve images of the Mandelbrot zoom sequence with the zoom-in ratio of 0.7.

The basic idea for this function is to create an image which belongs to the Mandelbrot zoom sequence, convert
the color space from RGB to YUV, append this image as a frame into a movie, generate the next image in
the zoom sequence, and repeat the previous steps until there are enough frames for the movie. After finishing
generating the sequence, save the movie as a file to the disk by calling the SaveMovie() function.

The following steps are needed to generate a Mandelbrot zoom sequence with fractal shapes

1. Shift the center of the Mandelbrot space
In assignment4, we scale the x coordinate of the pixels into the range of [-2.5, 1], and the y coordinate into
the range of [-1, 1]. Hence, the complex number that is in the center of the image is -0.75+0i, where -0.75
= (-2.5 + 1)/2 and 0 = (-1 + 1) / 2.
In order to get a sequence of images with nice fractal shapes, we need to move the center of the image from
-0.75+0i to -0.743643887037158704752191506114774L + 0.131825904205311970493132056385139Li.

2. Use a proper zooming-in ratio
In order to zoom in the Mandelbrot image, we need to scale the pixels of the image into smaller ranges.
For example, given a zooming-in ratio of 0.7, and unshifted Mandelbrot image:
The range for the real axis (x) and the imaginary axis (y) of the first image is [-2.5, 1], and [-1, 1] respec-
tively;
The range for the real axis (x) and the imaginary axis (y) of the second image is [-1.75, 0.7], and [-0.7,
0.7] respectively;
The range for the real axis (x) and the imaginary axis (y) of the third image is [-1.225, 0.49], and [-0.49,

8

http://en.wikipedia.org/wiki/Mandelbrot_set

0.49] respectively;
....

3. Scale / map the coordinates of the pixels to the corresponding Mandelbrot complex numbers
In this step, you need to define the mapping function from the pixel coordinate to the complex number
which falls in the complex plane for a specific Mandelbrot image.

You can extend your Mandelbrot() function in assignment4 to create one image in the zoom sequence. The
following two functions are suggested to define for this operation.

/* Mandelbrot in DIPs.c */
IMAGE *Mandelbrot(

unsigned int W, /* the width of the image */
unsigned int H, /* the height of the image */
unsigned int max_iteration, /* the max iteration for Mandelbrot computation */
long double ratio, /* the zoom ratio */
long double offsetv, /* the vertical offset of the complex plane */
long double offseth /* the horizontal offset of the complex plane */

)

/*Fill the Mandelbrot images as the frames to a movie in MovieLab.c */
int MandelbrotMovie(

int nFrame, /* number of the frames in the movie */
unsigned int W, /* the width of the movie */
unsigned int H, /* the height of the movie */
MOVIE *movie /* the point to the output movie */

)

Note that, you may need to use the variables of long double to get better precisions for the computation in this
operation, and you need to manage the memory space for both the images and the movie properly.

For testing, please try to generate a Mandelbrot zoom sequence of 80 frames with 532x304 pixel per frame, and
set the zooming-in ratio to be 0.7. Please name the output file as “mandelbrot”. More specifically, you can use
the following command to create the Mandelbrot zoom sequence and view the movie.

% ./MovieLab -o mandelbrot -f 80 -s 532x304 -m
Creating Mandelbrot frame #1
Creating Mandelbrot frame #2
Creating Mandelbrot frame #3
...
Creating Mandelbrot frame #80
% ˜eecs22/bin/yay -f 1 -s 532x304 mandelbrot.yuv

You can also use the following command to check the reference Mandelbrot movie in the eecs22 account.

% ˜eecs22/bin/yay -f 1 -s 532x304 ˜eecs22/hw5/mandelbrot.yuv

• Perform DIP operations on the movie:
We will add the support for 5 operations onto the movie file:

– Change a Color Movie to Black and White (”-bw” option):
Traverse the frame list of the movie, and perform BlackNWhite() operation for each frame images.

Fig. 2 shows an example of this operation. The execution of our program should be like:

9

(a) Color movie (bird.yuv, frame: 108) (b) Black and white movie (bird.yuv, frame: 108)

(c) Color movie (mandelbrot.yuv, frame: 1) (d) Black and white movie (mandelbrot.yuv,
frame: 1)

Figure 2: The color movies and their black and white counterparts.

%./MovieLab -i bird -o out -f 141 -s 352x288 -bw
The movie file bird.yuv has been read successfully!
Operation BlackNWhite is done!
The movie file out.yuv has been written successfully!

– Make a negative of a movie (”-n” option):
Traverse the frame list of the movie, and perform Negative() operation for each frame images.
Fig. 3 shows an example of this operation. The execution of our program should be like:

%./MovieLab -i bird -o out -f 141 -s 352x288 -n
The movie file bird.yuv has been read successfully!
Operation Negative is done!
The movie file out.yuv has been written successfully!

– Flip the movie Horizontally (”-hf” option):
Traverse the frame list of the movie, and perform HFlip() operation for each frame images.
Fig. 4 shows an example of this operation. The execution of our program should be like:

%./MovieLab -i bird -o out -f 141 -s 352x288 -hf
The movie file bird.yuv has been read successfully!
Operation HFlip is done!
The movie file out.yuv has been written successfully!

– Flip the movie Vertically (”-vf” option):
Traverse the frame list of the movie, and perform VFlip() operation for each frame images.
Fig. 5 shows an example of this operation. The execution of our program should be like:

%./MovieLab -i bird -o out -f 141 -s 352x288 -vf
The movie file bird.yuv has been read successfully!
Operation VFlip is done!
The movie file out.yuv has been written successfully!

10

(a) Original movie (bird.yuv, frame: 108) (b) Negative movie (bird.yuv, frame: 108)

(c) Original movie (mandelbrot.yuv, frame: 1) (d) Negative movie (mandelbrot.yuv, frame: 1)

Figure 3: The movies and their negative counterparts.

(a) Original movie (bird.yuv, frame: 108) (b) Horizontally flipped movie (bird.yuv, frame:
108)

(c) Original movie (mandelbrot.yuv, frame: 1) (d) Horizontally flipped movie (mandelbrot.yuv,
frame: 1)

Figure 4: The movies and their horizontally flipped counterparts.

11

(a) Original movie (bird.yuv, frame: 108) (b) Vertically flipped movie (bird.yuv, frame:
108)

(c) Original movie (mandelbrot.yuv, frame: 1) (d) Vertically flipped movie (mandelbrot.yuv,
frame: 1)

Figure 5: The movie and their vertically flipped counterparts.

All of the above DIP operations are implemented in assignment3 for the image (in DIPs.c module). The function
signatures for these image DIP functions are in DIPs.h:

/* change color image to black & white */
void BlackNWhite(IMAGE *image);

/* reverse image color */
void Negative(IMAGE *image);

/* flip image horizontally */
void HFlip(IMAGE *image);

/* flip image vertically */
void VFlip(IMAGE *image);

These four functions have the same parameter lists and return values.

We will define one function Movie DIP Operation() to traverse the frame list of the movie, and perform the DIP
operations on each frame. Function pointers will be used for performing different operations onto the frame
images in the Movie DIP Operation() function:

/* type define the function pointer to the DIP function */
typedef void MOP_F(IMAGE *image);

/* the function for perform DIP operations on the movie*/
void Movie_DIP_Operation(MOVIE *movie, MOP_F *MovieOP);

12

(a) Original movie (bird.yuv, frame: 108) (b) Frame order reversed movie (bird.yuv, frame:
108)

(c) Original movie (mandelbrot.yuv, frame: 1) (d) Frame order reversed movie (mandelbrot.yuv,
frame: 1)

Figure 6: The movie and their frame order reversed counterparts.

When we need to turn the movie into black and white, we pass the function pointer of BlackNWhite() to the
Movie DIP Operation() function as:

Movie_DIP_Operation(movie, BlackNWhite);

When we need to turn the movie into negative, we pass the function pointer of Negative() to the Movie DIP Operation()
function as:

Movie_DIP_Operation(movie, Negative);

NOTE: Please refer to the slides of lecture 15 or later for the examples of function pointers.

NOTE: We will reuse the DIP.c module for this assignment. Please adjust your Makefile accordingly with
proper target and dependencies. Please include the header file (DIPs.h) properly in your source code.

• Reverse the frame order of the movie (bonus: 10 pts):
Please support the reverse frame order (“-rvs”) operation for the MovieLab program. What you need to do is to
reverse the doubly-linked frame list of the movie.

Fig. 6 shows an example of this operation. The execution of our program should be like:

%./MovieLab -i bird -o out -f 141 -s 352x288 -rvs
The movie file bird.yuv has been read successfully!
Operation ReverseMovie is done!
The movie file out.yuv has been written successfully!

NOTE: Due to the space limitation for the account on the ladera Linux server, please use the same output file
name, i.e. out.yuv, when you test your program so as to save disk spaces.

13

1.4 Build the Makefile
Please create your own Makefile with at least the following targets:

• all: the dummy target to generate the executable program MovieLab.

• clean: the target to clean all the intermedia files, e.g. object files, the generated .yuv file, and the executable
program.

• *.o: the target to generate the object file *.o from the C source code file *.c.

• MovieLab: the target to generate the executable program MovieLab.

2 Implementation Details

2.1 Structure Definitions
For this assignment, you need to define the following structures in ImageList.h:

typedef struct ImageList ILIST;
typedef struct ImageEntry IENTRY;

struct ImageEntry
{

ILIST *List; /* pointer to the list which this entry belongs to */
IENTRY *Next; /* pointer to the next entry, or NULL */
IENTRY *Prev; /* pointer to the previous entry, or NULL */
IMAGE *Image; /* pointer to the struct for the image */

};

struct ImageList
{

unsigned int Length; /* Length of the list */
IENTRY *First; /* pointer to the first entry, or NULL */
IENTRY *Last; /* pointer to the last entry, or NULL */

};

The following structure in Movie.h:

/* the structure for MOVIE */
typedef struct{

ILIST *Frames; /* the pointer to the frame list */
unsigned int Width; /* movie frame width */
unsigned int Height; /* movie frame height */
unsigned int NumFrames; /* total number of frames */

}MOVIE;

2.2 Function Prototypes
For this assignment, you need to define the following functions in ImageList.c module:

/* allocate a new image list */
ILIST *NewImageList(void);

/* delete a image list (and all entries) */
void DeleteImageList(ILIST *l);

14

/* insert a student into a list */
void AppendImage(ILIST *l, IMAGE *image);

/* reverse an image list */
void ReverseImageList(ILIST *l);

The following functions in Movie.c module:

/* allocate the memory spaces for the movie */
/* and the memory spaces for the frame list. */
/* return the pointer to the movie */
MOVIE *CreateMovie(unsigned int nFrames, unsigned int W, unsigned int H);

/*release the memory spaces for the frames and the frame list. */
/*release the memory spaces for the movie. */
void DeleteMovie(MOVIE *movie);

/* convert the YUV image into the RGB image */
void YUV2RGBImage(IMAGE *YUVImage, IMAGE *RGBImage);

/* convert the RGB image into the YUV image */
void RGB2YUVImage(IMAGE *RGBImage, IMAGE *YUVImage);

The following functions in MovieLab.c module:

/*read the movie frames from the input file */
int ReadMovie(const char *fname, int nFrame, unsigned int W, unsigned int H, MOVIE *movie);

/* the function for perform DIP operations on the movie*/
void Movie_DIP_Operation(MOVIE *movie, MOP_F *MovieOP);

/*main function*/
int main(int argc, char *argv[]);

You may want to define other functions as needed.

3 Budgeting your time
You have two weeks to complete this assignment, but we encourage you to get started early. We suggest you budget
your time as follows:

• Week 1:

1. Add the command-line argument support in the main() function.
2. Design the ImageList.c (ImageList.h as the header file) module.
3. Build the Makefile.
4. Design the Movie.c (Movie.h as the header file) module if possible.

• Week 2:

1. Finish the Movie.c (Movie.h as the header file) module.
2. Finish the MovieLab.c module.
3. Finalize the Makefile.
4. Use Valgrind to check memory usage. Fix the code if Valgrind complains about any errors or memory

leaks.
5. Script the result of your programs and submit your work.

15

4 Script File
To demonstrate that your program works correctly, perform the following steps and submit the log as your script file:

1. Start the script by typing the command: script

2. Compile MovieLab by using your Makefile

3. run the program: % MovieLab -h

4. run the program: % MovieLab -o mandelbrot -f 80 -s 532x304 -m

5. run the program: % MovieLab -i mandelbrot -o out -f 80 -s 532x304 -bw

6. run the program: % MovieLab -i mandelbrot -o out -f 80 -s 532x304 -n

7. run the program: % MovieLab -i mandelbrot -o out -f 80 -s 532x304 -hf

8. run the program: % MovieLab -i mandelbrot -o out -f 80 -s 532x304 -vf

9. run the program: % MovieLab -i mandelbrot -o out -f 80 -s 532x304 -rvs

10. run the program: % MovieLab -i bird -o out -f 141 -s 352x288 -bw

11. run the program: % MovieLab -i bird -o out -f 141 -s 352x288 -n

12. run the program: % MovieLab -i bird -o out -f 141 -s 352x288 -hf under the monitor of Valgrind

13. run the program: % MovieLab -i bird -o out -f 141 -s 352x288 -vf under the monitor of Valgrind

14. run the program: % MovieLab -i bird -o out -f 141 -s 352x288 -rvs under the monitor of Valgrind

15. run the program: % MovieLab -o mandelbrot -f 2 -s 532x304 -m under the monitor of Valgrind

16. Clean all the object files, generated .yuv file and executable program by using your Makefile.

17. Stop the script by typing the command: exit.

18. Rename the script file to MovieLab.script.

NOTE: The script file is important, and will be checked in grading; you must follow the above steps to create the script
file. Please don’t open any text editor while scripting !!!

5 Submission
Use the standard submission procedure to submit the following files as the whole package of your program:

• MovieLab.c

• MovieLab.script

• ImageList.c

• ImageList.h

• Movie.c

• Movie.h

• Makefile

16

	MovieLab [100 points + 10 bonus points]
	Introduction
	 Initial Setup
	Design the MovieLab Program
	The Image.c module (provided)
	The ImageList.c module
	The Movie.c module
	The MovieLab.c module

	Build the Makefile

	 Implementation Details
	Structure Definitions
	 Function Prototypes

	Budgeting your time
	 Script File
	Submission

