
<header> <date>

<footer> 1

EECS22 LAB WEEK9
Weiwei Chen

Assignment 5

11/26/12 W. Chen

2

¨  Double-linked list
¨  Dynamic memory allocation
¨  Color space conversion
¨  Command line arguments
¨  Function pointers
¨  Mandelbrot zooming sequence

<header> <date>

<footer> 2

MovieLab Modules

11/26/12 W. Chen 3

DIPs.c

DIPs.h

Compiler

DIPs.o

MovieLab.c

Compiler

MovieLab.o

Linker

MovieLab

libc.a

Image.h

Image.c

Compiler

Image.o

ImageList.h

ImageList.c

Compiler

ImageList.o

Movie.h

Movie.c

Compiler

Movie.o

Learning Outcome

11/26/12 W. Chen

4

¨  Understand the input and output of assignment5.
¨  Understand the relationship between images and

movies.
¨  Understand the representation of a movie in a C

program.
¨  Understand the difference and relation between

YUV and RGB color spaces.
¨  Understand double-linked list and its basic

operations.

<header> <date>

<footer> 3

Question1 [Yellow Group]

11/26/12 W. Chen

5

¨  This is a group of questions for the MovieLab
program:
¤ What is the input and output for this program?
¤ What is the relation between an image and a movie?

How do we represent a movie in computer?
¤ Let’s take a look at the implementation, what FileIO

functions do we have for this assignment? How can we
use these functions to build the movie in our program?

Question2 [Blue Group]

11/26/12 W. Chen

6

¨  This is a group of questions for color spaces:
¤ Which color space are we going to use? Please

compare this color space with the RGB color
space that we were using for our previous
assignment, same vs. difference?

¤ How to do the color space conversion? Could you
please write down the conversion equation? What
shall we take care of to implement the color space
conversion function?

¤ Why do we need color space conversion for this
assignment?

<header> <date>

<footer> 4

Question3 [Orange Group]

11/26/12 W. Chen

7

¨  This is a group of questions for double-linked
list:
¤ What is a double-linked list? Please draw the

diagram for a double-linked list with 5 entries.
¤ How many structures do we need to implement a

double-linked list? What type of member variables
do we need for each structure? Could you please
write the definition of these structures?

¤ How to add an entry to a double-linked list? How
to reverse a double-linked list?

Question4 [Red Group]

11/26/12 W. Chen

8

¨  This is a group of questions for the operations
we are going to perform on the movie:
¤ How can we relate the image with the movie?
¤ How can we reuse our DIP functions in our

previous assignments for this assignment?
¤ How to perform DIP operations for the images

onto the movies? How would you implement this
in C?

<header> <date>

<footer> 5

Double-linked List (empty)

11/26/12 W. Chen

9 Length: 0

First
Last NULL

NULL

Double-linked List: Append

11/26/12 W. Chen

10

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

Length: 0

First
Last NULL

NULL

NULL

image0

Frames

Width
Height

numFrames

<header> <date>

<footer> 6

Frames

Width
Height

numFrames

Double-linked List (Length: 1)

11/26/12 W. Chen

11

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

Length: 1

First
Last

image0

Frames

Width
Height

numFrames

Double-linked List: Append

11/26/12 W. Chen

12

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

Length: 1

First
Last

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

NULL

image0 image1

<header> <date>

<footer> 7

Frames

Width
Height

numFrames

Double-linked List (Length: 2)

11/26/12 W. Chen

13

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

Length: 2

First
Last

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

image0 image1

Frames

Width
Height

numFrames

Double-linked List: Append

11/26/12 W. Chen

14

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

Length: 2

First
Last

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

NULL

image0 image1 image2

<header> <date>

<footer> 8

Frames

Width
Height

numFrames

Double-linked List (Length: 3)

11/26/12 W. Chen

15

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

Length: 3

First
Last

List

Prev
Next

Image

Width

Height
R

G

B

.

.

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

image0 image1 image2

Frames

Width
Height

numFrames

Double-linked List: RemoveLast

11/26/12 W. Chen

16

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

Length: 2

First
Last

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

NULL

image0 image1 image2

<header> <date>

<footer> 9

Frames

Width
Height

numFrames

Double-linked List (Length: 2)

11/26/12 W. Chen

17

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

Length: 2

First
Last

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL

image0 image1

Frames

Width
Height

numFrames

Double-linked List: RemoveLast

11/26/12 W. Chen

18

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

Length: 1

First
Last

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

NULL

image0 image1

<header> <date>

<footer> 10

Frames

Width
Height

numFrames

Double-linked List (Length: 1)

11/26/12 W. Chen

19

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

Length: 1

First
Last

image0

Double-linked List: RemoveLast

11/26/12 W. Chen

20

List

Prev
Next

Image

Width

Height
R

G

B

.

.

NULL
NULL

Length: 0

First
Last NULL

NULL

NULL

image0

Frames

Width
Height

numFrames

<header> <date>

<footer> 11

Double-linked List (empty)

11/26/12 W. Chen

21 Length: 0

First
Last NULL

NULL

Frames

Width
Height

numFrames

Double-linked List: Reverse, init

11/26/12 W. Chen

22

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

<header> <date>

<footer> 12

Double-linked List: Reverse, step1

11/26/12 W. Chen

23

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pCurrent->Next = pPrev;
pCurrent->Prev = pNext;

Double-linked List: Reverse, step2

11/26/12 W. Chen

24

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pPrev = pCurrent;
pCurrent = pNext;
pNext = pNext->Next;

<header> <date>

<footer> 13

Double-linked List: Reverse, step2

11/26/12 W. Chen

25

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pCurrent->Next = pPrev;
pCurrent->Prev = pNext;

Double-linked List: Reverse, step3

11/26/12 W. Chen

26

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pPrev = pCurrent;
pCurrent = pNext;
pNext = pNext->Next;

<header> <date>

<footer> 14

Double-linked List: Reverse, step3

11/26/12 W. Chen

27

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pCurrent->Next = pPrev;
pCurrent->Prev = pNext;

Double-linked List: Reverse, step4

11/26/12 W. Chen

28

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pPrev = pCurrent;
pCurrent = pNext;
pNext = pNext->Next;

<header> <date>

<footer> 15

Double-linked List: Reverse, step4

11/26/12 W. Chen

29

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pCurrent->Next = pPrev;
pCurrent->Prev = pNext;

Double-linked List: Reverse, step5

11/26/12 W. Chen

30

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pPrev = pCurrent;
pCurrent = pNext;
pNext = pNext->Next;

<header> <date>

<footer> 16

Double-linked List: Reverse, step5

11/26/12 W. Chen

31

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

pCurrent->Next = pPrev;
pCurrent->Prev = pNext; pNext == NULL, stop

Double-linked List: Reverse, step5

11/26/12 W. Chen

32

List

Prev
Next

NULL

Length: 5

First
Last

List

Prev
Next

e0

List

Prev
Next

List

Prev
Next

List

Prev
Next

NULL
e1 e2 e3 e4

pPrev pCurrent pNext

Last = First;
First = pCurrent;

<header> <date>

<footer> 17

Budgeting Your Time

11/26/12 W. Chen

33

¨  Week 1:
¤  Add the command-line argument support in the main() function.
¤  Design the ImageList.c (ImageList.h as the header file) module.
¤  Design the Movie.c (Movie.h as the header file) module.
¤  Build the Makefile.

¨  Week 2:
¤  Add the command-line argument support in the main() function.
¤  Design the MovieLab.c module.
¤  Finalize the Makefile.
¤  Use Valgrind to check memory usage. Fix the code if Valgrind

complains about any errors or memory leaks.
¤  Script the result of your programs and submit your work.

