
1

EECS 222A
System-on-Chip Description and Modeling

Spring 2012

Assignment 3

Posted: April 27, 2012
Due: May 4, 2012 at 12pm (noon)

Topic: Structural Hierarchy for Application Example

1. Setup:

We will use the same setup as for Assignment 2 and again use the latest SCE
version:

source /opt/sce/bin/setup.csh

In order to use turnin to submit your deliverables, create a new directory
named hw3 (next to your hw2 directory) and work in there:

mkdir hw/hw3
cd hw/hw3

2. Application Example

We will continue with the project of designing a system-level model for the Canny
Edge Detector algorithm. This assignment basically starts where Assignment 2
ended. For your reference, we have provided a solution file.

cp ~eecs222/EECS222A_S12/canny_a2_ref.sc .

For this Assignment 3, we have prepared another file, canny_a3_start.sc,
where some more clean-up has been done and a few other adjustments have
been applied. So, use the following as starting point for this assignment:

cp ~eecs222/EECS222A_S12/canny_a3_start.sc canny.sc
cp ~eecs222/EECS222A_S12/Makefile .
cp ~eecs222/EECS222A_S12/golfcart.pgm .
cp ~eecs222/EECS222A_S12/ ref_golfcart.pgm
 _s_0.60_l_0.30_h_0.80.pgm .

Note the Makefile and the reference image. With these, you can compile, run,
and test your code quickly (type make in your shell or simply use Eclipse).

2

3. Tools

Please refer to the previous assignment regarding helpful Linux tools for this
project. Again, you may use any text editor of your choice and use the SpecC
compiler via the command line interface. Alternatively, we offer our extended
version of Eclipse, an open source IDE, which includes specific support for
SpecC projects.

3.1 Eclipse Update:

In addition to (a) SpecC syntax highlighting and (b) Automatic compiling on save,
supported features now include an Outline View and a Behavior Hierarchy
display which provide you with overview and quick navigation of your code.

(c) Outline View: This is open by default. You can find it in the window at the right
side of your editor. You can quickly navigate the code (jump to items) by clicking
the listed items in Outline.

(d) Behavior Hierachy: This is not open initially. To open it, select from the menu
Window -> Show View -> Other, find category SpecC, and select
Behavior Hierachy. Once the Behavior Hierarchy is shown, you need to re-
save (re-compile) your file to refresh the view. This will update the hierarchy
display if your code compiles successfully.

In this assignment, both features should proof to be quite useful.

4. Instructions

The purpose of this assignment is to introduce a proper test bench and overall
structural hierarchy into our application model.

Please time yourself for this assignment. At the end, we would like to know how
many minutes this took for you. Thanks!

In particular, we will introduce the top-level behavior Main consisting of
Stimulus, Platform, and Monitor behaviors. The Platform behavior, in
turn, should contain an input unit DataIn, an output unit DataOut, and the
actual design under test DUT.

For communication, we will introduce proper channels. Specifically, we will use
queue channels (of size 2) to send and receive the image data between the
behaviors. For the above structural hierarchy, four channels will be needed, two
at the test bench level (Main behavior), and two within the Platform behavior.

As data type for the channels, please define the following:

typedef unsigned char img[SIZE]; // image data type

3

Overall, your model should be structured as the following sir_tree log shows:

sir_tree -blt canny.sir
B i o behavior Main
B i l |------ Monitor monitor
B i c |------ Platform platform
B i l | |------ DUT canny
B i l | |------ DataIn din
B i l | |------ DataOut dout
C i l | |------ c_img_queue q1
C i l | \------ c_img_queue q2
B i l |------ Stimulus stimulus
C i l |------ c_img_queue q1
C i l \------ c_img_queue q2

The Main behavior should instantiate and run the Stimulus, Platform, and
Monitor in parallel. In addition (optional), it may handle command line
parameters (e.g. the image file name) and pass them into the Stimulus and/or
Monitor.

The Stimulus behavior should read the input image from the file system and
pass it into the Platform via a queue channel. Correspondingly, the Monitor
should receive the edge image from the Platform and write it out into the
output file.

In the Platform, the DataIn behavior should, in an endless loop, receive an
input image and pass it unmodified to the DUT. Similar, the DataOut behavior
should, also in an endless loop, receive an input image from the DUT and pass it
on. These two behaviors will allow our test bench to remain unmodified even
when later in the design flow the communication to the DUT is implemented via
detailed bus protocols.

Finally, the DUT behavior should contain all the Canny algorithm code. Its main
method should receive an image, call canny() to process it, and send out the
edge image. Since our target chip will never stop working (unless its power is
turned off), this processing should run in an endless loop, similar as the DataIn
and DataOut behaviors.

Throughout your model recoding, ensure that it still compiles, runs, and
generates the correct output image. You are done with this assignment when the
hierarchy described above has been created and your code compiles fine without
errors or warnings. Please note the time when you are done.

4

3. Submission:

For this assignment, submit the following deliverables:

canny.sc
canny.txt

As before, the text file should briefly mention whether or not your efforts were
successful and what (if any) problems you encountered. Be brief!

To submit the deliverables, change into the parent directory of your hw3 directory
and enter turnin. As in the previous assignments, the turnin command will
locate the files listed above and allow you to submit them.

Remember that you can use the turnin tool to submit at any time before the
deadline, but not after! Since you can submit as many times as you want (newer
submissions will overwrite older ones), it is highly recommended to submit early
and even incomplete work, in order to avoid missing the deadline.

Late submissions cannot be considered!

In addition to these deliverables, we would like to ask you to complete a short
survey on your experience with the extended eclipse. Please check the course
message board for this survey.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

