
1

EECS 222A
System-on-Chip Description and Modeling

Spring 2012

Assignment 4

Posted: May 11, 2012
Due: May 18, 2012 at 12pm (noon)

Topic: Parallelization of Application Example

1. Setup:

We will use the same setup as for Assignment 3 and again use the latest SCE
version:

source /opt/sce/bin/setup.csh

In order to use turnin to submit your deliverables, create a new directory
named hw4 (next to your hw3 directory) and work there:

mkdir hw/hw4
cd hw/hw4

2. Application Example

We will continue with the project of designing a system-level model for the Canny
Edge Detector algorithm. This assignment starts one step after the point where
Assignment 3 ended. For your reference, we have provided a solution file.

cp ~eecs222/EECS222A_S12/canny_a3_ref.sc .

As discussed in Lecture 5, we have now inserted an additional level of hierarchy
into the DUT. Also, some additional clean-up has been performed and a few
other adjustments have been applied. So, for this Assignment 4, we have again
prepared a source file to start from, namely canny_a4_start.sc.

2

The hierarchy tree of the corresponding canny_a4_start.sir model looks as
follows:

sir_tree -blt canny.sir
B i o behavior Main
B i l |------ Monitor monitor
B i c |------ Platform platform
B i s | |------ DUT canny
B i l | | |------ Apply_Hysteresis apply_hysteresis
B i l | | |------ Derivative_X_Y derivative_x_y
B i l | | |------ Gaussian_Smooth gaussian_smooth
B i l | | |------ Magnitude_X_Y magnitude_x_y
B i l | | \------ Non_Max_Supp non_max_supp
B i l | |------ DataIn din
B i l | |------ DataOut dout
C i l | |------ c_img_queue q1
C i l | \------ c_img_queue q2
B i l |------ Stimulus stimulus
C i l |------ c_img_queue q1
C i l \------ c_img_queue q2

To set up, use the following as starting point for this assignment:

cp ~eecs222/EECS222A_S12/canny_a4_start.sc canny.sc
cp ~eecs222/EECS222A_S12/Makefile .
cp ~eecs222/EECS222A_S12/golfcart.pgm .
cp ~eecs222/EECS222A_S12/ ref_golfcart.pgm
 _s_0.60_l_0.30_h_0.80.pgm .

As for Assignment 3, we provide again a Makefile and the reference image so
that you can compile, run, and test your code quickly (type make in your shell or
simply use Eclipse). Note, however, that in contrast to the compiler command in
the previous Makefile, we now have enabled the parallel simulation feature of
the latest SpecC compiler (see below for more discussion on this).

3. Tools

Please refer to the previous assignments regarding helpful Linux tools for this
project. Again, you may use any text editor of your choice and use the SpecC
compiler via the command line interface. Alternatively, we recommend our
extended version of Eclipse, an open source IDE, which includes specific support
for SpecC projects (and this assignment, in particular!).

3

3.1 Eclipse Update:

In addition to (a) SpecC syntax highlighting, (b) Automatic compiling on save, (c)
Outline View, and (d) Behavior Hierachy, the SpecC-enhanced Eclipse now
offers a new display that shows variable accesses and potential conflicts in
parallel execution.

(e) Non-local Variable View: This is not open initially. To open it, select from the
menu Window -> Show View -> Other, find category SpecC, and select
Non-local Variables.

Before you can use the Non-local Variable View, please make sure both
Behavior Hierarchy (BH, see instructions for Assignment 3) and Non-
local Variables (NV) are visible in Eclipse. For example, if both views
appear in the same sub-window beneath the editor after you open them (only
one can be seen at a time), then you can drag BH or NV and drop it into the sub-
window at the right side of the editor (so that you can see both).

Note that there are two ways to use NV:

1. Check data-flow for correct ports: if you select a leaf behavior in BH, the non-
local variables accessed in that behavior will be displayed in NV. The variables
listed are defined or used outside the selected behavior and essentially are
inputs or outputs of the behavior. Consequently, these should be converted to
ports for proper modeling.

2. Check data conflicts for correct parallelism: once you have created parallel
behaviors, for example, par{A; B;}, you can multi-select the parallel behaviors
by first selecting A in BH and then holding Ctrl on your keyboard when selecting
B. The variables accessed by both A and B are then displayed in NV. More
importantly, any potential data conflicts due to shared variables between A and B
are highlighted in red. These are the variables which may cause erroneous
parallel execution!

For this assignment, this new feature should proof to be very useful.

4

4. Instructions

Please time yourself for this assignment. At the end, we would like to know how
many minutes this took for you. Thanks!

The purpose of this assignment is to introduce and explicitly specify potential
parallelism in our application model.

As discussed in Lectures 5 and 6, we will focus our attention to the behavior
Gaussian_Smooth which contains the highest amount of computation in the
Canny application. The goal is to parallelize this block so that we can speed up
the overall computation.

For the purpose of this assignment, we will aim at a maximum of 4 parallel blocks
executing at the same time.

As discussed in class, we will decompose the behavior Gaussian_Smooth into
three types of behaviors, namely a preparation step Prep, the horizontal image
blurring BlurX, and the vertical image blurring BlurY. For each of these
behaviors, multiple instances may be used in order to maximize the parallelism of
the Gaussian Smooth method. How many instances are used, how they are
connected, and which ones actually run in parallel, is to be answered as part of
this assignment.

Hint on parallelization: Same as many other graphics applications, we can
parallelize the image processing by splitting the picture into multiple parts along
its rows or columns and work on those slices in parallel. Here, the blurring can be
performed the same way. To do this, we recommend to pass the entire image to
each parallel unit, and also pass in the range of rows or columns (via ports) that
the unit is supposed to work on.

Hint on validation: In order to validate whether or not your parallelism works
safely, it is useful to run the simulation also in parallel. For this, we have now
enabled the parallel simulation feature of the latest SpecC compiler in the
provided Makefile. Specifically, we now call scc with the option –par which
instructs it to utilize multiple available cores on the host in parallel. In our case,
please use the machines eta.eecs.uci.edu or theta.eecs.uci.edu for
your simulation. Both have 2 cores each that the parallel simulator will use.

As discussed in class, this not only can provide you with faster simulation speed,
it also helps in detecting concurrency problems in your model. In particular, with
parallel simulation, it is highly likely that shared variables with access conflicts
during parallel usage actually produce errors during simulation (which is what we
want!).

5

Throughout your model recoding, make sure that it still compiles without any
warnings, runs without any errors (even when parallel simulation is enabled), and
generates exactly the expected output image.

You are done with this assignment when the Gaussian_Smooth behavior has
been decomposed into the three behavior types and up to 4 instances of these
run concurrently. Your model should not contain any global variables or global
functions and your hierarchy should be “clean” for synthesis purposes (no “dirty”
behavior should be part of the DUT).

Please note the time when you are done. Thanks!

5. Submission:

For this assignment, submit the following deliverables:

canny.sc
canny.txt

As before, the text file should briefly mention whether or not your efforts were
successful and what (if any) problems you encountered. Be brief!

To submit the deliverables, change into the parent directory of your hw4 directory
and enter turnin. As in the previous assignments, the turnin command will
locate the files listed above and allow you to submit them.

Remember that you can use the turnin tool to submit at any time before the
deadline, but not after! Since you can submit as many times as you want (newer
submissions will overwrite older ones), it is highly recommended to submit early
and even incomplete work, in order to avoid missing the deadline.

Late submissions cannot be considered!

Extra credit: In addition to these deliverables, we would like to ask you to
complete a short survey on your experience with the extended eclipse. Please
check the course message board for this survey.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

