
1

EECS 222A
System-on-Chip Description and Modeling

Spring 2012

Assignment 5

Posted: May 18, 2012
Due: May 25, 2012 at 12pm (noon)

Topic: Refinement of Application Example

1. Setup:

We will use the same setup as for Assignment 4 and again use the latest SCE
version:

source /opt/sce/bin/setup.csh

In order to use turnin to submit your deliverables, create a new directory
named hw5 (next to your hw4 directory) and work there:

mkdir hw/hw5
cd hw/hw5

2. Application Example

With this assignment, we aim to complete the project of designing a system-level
model for the Canny Edge Detector algorithm. This assignment starts one step
after the point where Assignment 4 ended. For your reference, we have provided
a solution file.

cp ~eecs222/EECS222A_S12/canny_a4_ref.sc .

As discussed in Lecture 7, we have further adjusted the application specification
and added a timing report into the test bench. Again, some additional other
adjustments have been applied also. So, for this Assignment 5, we have again
prepared a source file to start from, namely canny_a5_start.sc.

To set up, use the following as starting point for this assignment:

cp ~eecs222/EECS222A_S12/canny_a5_start.sc canny.sc
cp ~eecs222/EECS222A_S12/Makefile .
cp ~eecs222/EECS222A_S12/golfcart.pgm .
cp ~eecs222/EECS222A_S12/ ref_golfcart.pgm
 _s_0.60_l_0.30_h_0.80.pgm .

2

3. Instructions

Note that this assignment is much more open-ended than the previous ones!
While there are some deliverables, it will be up to you how far you want to push it.
The goal is to collect enough information so that you can wrap up this project in a
technical report in the end.

The purpose of this assignment is to refine the specification model of our Canny
application towards a high-level System-on-Chip implementation. Specifically, we
will use the System-on-Chip Environment (SCE) for the refinement.

Step 1, Architecture Refinement: Import the specification model into SCE and
compile and run it. Allocate PEs, namely an ARM7_TDMI as main processor, two
HW_Virtual as IOunits (for DataIn and DataOut), and several HW_Standard units
for the HW accelerated blocks (e.g. the parallel blocks in Gaussian Smooth).
Next, use the Evaluate function of the SCE profiler to estimate the execution time.

Once you have a satisfactory allocation and mapping, run the Architecture
Refinement tool to generate a platform model. Compile and simulate to ensure
functional correctness.

Step 2, Scheduling Refinement: In the generated architecture model, schedule
the PEs as you feel appropriate. Use the Scheduling Refinement tool to generate
a corresponding scheduled model. Compile and simulate to ensure functional
correctness. Check whether or not the model meets your timing constraints.

Step 3, Network Refinement: Allocate an AMBA_AHB bus as main bus of the
processor (should already be pre-selected) and one (or more) simple
DblHndShkBus for communication between HW units directly. Connect the
busses to the PEs so that you have sufficient connectivity for all channels.
Remember, the processor is always a master on its bus. HW units, on the other
hand, can play the role of masters or slaves.

Use Network Refinement to generate a network model. Compile and simulate to
ensure functional correctness.

Step 4, Communication Refinement: For each allocated system bus, assign
appropriate link parameters. In many cases, SCE can assign suitable addresses
automatically when you right-click into the Link Parameters window and select
Autofill All Addresses.

Use Communication Refinement to generate a Transaction Level Model (TLM) or
Pin-Accurate Model (PAM), or both. Compile and simulate to ensure functional
correctness. Check whether or not the model meets your timing constraints.

Step 5, Instruction Level Model (optional): Using SCE, generate C code for
the ARM7 processor. Cross-compile the generated code for the target processor
(in your shell, go into the generated CPU subdirectory and type ‘make’). Compile

3

and simulate the generated ISS model to ensure functional correctness. Note the
cycle-accurate timing reported by the simulator. While this might differ
significantly from the estimated timing reported in earlier models, this is the
actual accurate timing of the System-on-Chip that you have implemented.
Congratulations!

Note that the above instructions have not been tested, your mileage may vary!
Please make use of the class message board to discuss any issues you
encounter during this adventure. Good luck!

4. Submission:

For this assignment, submit the following deliverables:

canny.tree
canny.txt

The file canny.tree should contain the output of the sir_tree tool with –blt
options for the latest model that you obtained after the refinement.

The text file should briefly describe your refinement efforts. Please note the
design decisions you took at each step, and what (if any) problems you
encountered. Finally, note the type of model you have reached (e.g. TLM) and
what its execution time was during simulation.

To submit the deliverables, change into the parent directory of your hw5 directory
and enter turnin. As in the previous assignments, the turnin command will
locate the files listed above and allow you to submit them.

Remember that you can use the turnin tool to submit at any time before the
deadline, but not after! Since you can submit as many times as you want (newer
submissions will overwrite older ones), it is highly recommended to submit early
and even incomplete work, in order to avoid missing the deadline.

Late submissions cannot be considered!

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

