
EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 1

EECS 222A:
System-on-Chip Description and Modeling

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 2

Lecture 1: Overview

• Course overview
– Context, content

• Course administration
– Schedule, assignments, communication

• Introduction to System-on-Chip design
– Embedded computer systems

– Levels of abstraction

– System design flow

– Models of computation

– System-level description languages

– Computation, communication, IP

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 2

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 3

Course Context

• EECS 222: Set of 4 courses on SoC Design

A. System-on-Chip Description and Modeling

B. System-on-Chip Design and Exploration

C. System-on-Chip Software Synthesis

D. System-on-Chip Hardware Synthesis

• Course A is prerequisite for B, C, and D,
or consent of instructor

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 4

Course Context

• EECS 222: Set of 4 courses on SoC Design
A. System-on-Chip Description and Modeling

Computational models for System-on-Chip (SoC). System-
level specification and description languages and
execution semantics. Concepts, requirements, examples.
SoC modeling at different levels of abstraction (untimed,
approximate time, cycle-accurate). Modeling of IP (IP
wrappers), design constraints, test benches. Simulation
semantics and algorithms. Co-simulation methodology.

B. System-on-Chip Design and Exploration

C. System-on-Chip Software Synthesis

D. System-on-Chip Hardware Synthesis

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 3

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 5

Course Context

• EECS 222: Set of 4 courses on SoC Design
A. System-on-Chip Description and Modeling

B. System-on-Chip Design and Exploration
System-on-Chip design flow and methodology. Design
space exploration. Co-design of hardware and software,
hardware/software partitioning. System-on-Chip
architecture exploration and synthesis. On-chip network
and communication design and synthesis. On-chip
software/hardware interface generation.

C. System-on-Chip Software Synthesis
D. System-on-Chip Hardware Synthesis

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 6

Course Context

• EECS 222: Set of 4 courses on SoC Design
A. System-on-Chip Description and Modeling
B. System-on-Chip Design and Exploration

C. System-on-Chip Software Synthesis
System-on-Chip software concepts, requirements,
examples, for engineering applications such as automotive
and communication. Software synthesis methodology.
Algorithmic specification, design constraints. Applications
using embedded operating systems. Static, dynamic
scheduling. Input/output, interrupt handling. Code
generation, retargetable compilation. Instruction set
simulation. Debugging and prototyping.

D. System-on-Chip Hardware Synthesis

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 4

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 7

Course Context

• EECS 222: Set of 4 courses on SoC Design
A. System-on-Chip Description and Modeling
B. System-on-Chip Design and Exploration
C. System-on-Chip Software Synthesis

D. System-on-Chip Hardware Synthesis
Hardware IP specification. Real-time constraints. Cycle-
accurate languages and modeling. Target architectures,
data path and control unit. Design tasks and design
methodology. Behavioral synthesis. Resource allocation,
operation scheduling, binding of operations and variables
to functional units, storage units and busses.
Communication protocol and interface synthesis. Arbiter,
bridge, Transducer, Controller design and synthesis. Net
list generation.

Course Content

1. Introduction to SoC concepts, computational models

2. The SpecC system-level description language

3. SoC specification, modeling guidelines, validation

4. Execution and simulation semantics

5. Abstraction levels, top-down design methodology

6. SoC architecture, processor modeling

7. SoC communication modeling

8. SoC hardware modeling, RTL

9. The SystemC system-level description language

10.UML and other system-level description languages

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 8

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 5

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 9

Course Administration

• Course web pages at
http://eee.uci.edu/12s/18422/
– Instructor information

– Course description and policies

– Objectives and outcomes

– Contents and schedule

– Resources and communication

– Assignments

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 10

Introduction to SoC Design

• Embedded Computer Systems

• System-on-Chip (SoC) Design

• Abstraction Levels

• SoC Design Flow

• Models of Computation

• System-Level Description Languages

• Computation vs. Communication

• Intellectual Property

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 6

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 11

Embedded Computer Systems

• Computers are ubiquitous, omnipresent…

• System-on-Chip (SoC) Design:
Design of complex embedded systems
on a single chip

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 12

Embedded Systems

• System embedded into another system
– Constraints from external input (often real-time)

– Application specific (not general purpose)

• Omnipresent in our environment
– In many application domains

– In 2005 [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Pervasive

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 7

Source:
Motorola Inc

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 13

Embedded System Design

• Design challenges
– Often mobile

• Battery powered (low power)

– Often highly reliable
• Extreme environment (e.g. temperature)

– High performance constraints
• Often real-time requirements

– High complexity
• E.g. Mercedes Benz E-class

– 55 electronic control units

– 5 communication busses

– Tightly coupled
• Software

• Hardware

– Rapid development
for low price…

Source: Daimler

Source: Xilinx

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 14

Embedded System Design

• Design Advantages
– Application known at design time

– Environment known at design time

– Allows for customized / optimized solution
• Improved performance

• More functionality

• At lower power

• Custom Platform, SW and HW components
– Multi-Processor System-on-Chip (MPSoC),

• Complete embedded system integrated on a chip

– General-purpose and application-specific processors

– Application Specific Integrated Circuit (ASIC)

– Field Programmable Gate Array (FPGA)

– Circuit board with off-the-shelf-components

Source: simh.trailing-edge.com

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 8

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 15

Design Complexity Challenge

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap

HW Design
Productivity
1.6x/18 months

Capability of
Technology
2x/18 months

Software
Productivity
2x/5 years

log

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

Average HW +
SW Productivity

Additional SW
required for HW
2x/10 months

System
Design Gap

HW Design
Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 16

Design Complexity Challenge

• Productivity Gaps
– Hardware productivity gap

• Capacities in chip size outpace capabilities in chip design

• Moore’s law: chip capacity doubles every 18 months

• HW design productivity estimated at 1.6x over 18 months

– Software productivity gap
• Growth of SW productivity estimated at 2x every 5 years

• Needs in embedded SW estimated at 2x over 10 months

– System productivity gap
• HW gap + SW gap

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 9

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 17

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

System

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 18

System level
1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 10

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 19

Abstraction Levels

TimingLow abstraction

High abstraction

Implementation Detail

Structure

physical layout

unstructured

Structure

real time

untimed

Timing

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 20

Abstraction Levels

Implementation
model

Communication
model

Architecture
model

Specification
model

Manufacturing

Product features

Structure

pure functional

transaction level

bus functional

RTL / IS

requirements

Timing

untimed

estimated timing

timing accurate

cycle accurate

constraints

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 11

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 21

Top-Down SoC Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 22

Models of Computation

• Computational Model
– Formal, abstract description of a system
– Various degrees of

• supported features
• complexity
• expressive power

• Examples
– Evolution process from FSM to PSM

• Finite State Machine (FSM)
• FSM with Data (FSMD)
• Super-state FSMD
• ...
• Program State Machine (PSM)

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 12

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 23

Models of Computation

• Finite State Machine (FSM)
– Basic model for describing control

– States and state transitions
• FSM = <S, I, O, f, h>

– Two types:
• Mealy-type FSM (input-based)

• Moore-type FSM (state-based)

S1 S2

S3

FSM model

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 24

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)
– Basic model for describing computation

– Directed graph
• Nodes: operations

• Arcs: dependency of operations

Op2 Op3

Op4

Op6

Op1

Op5

DFG model

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 13

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 25

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)
– Combined model for control and computation

• FSMD = FSM + DFG

– Implementation: controller plus datapath

FSMD model

S1 S2

S3

Op2 Op3

Op4

Op6

Op1

Op5
Op1 Op2

Op3

Op1 Op2

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 26

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)
– FSMD with complex, multi-cycle states

• States described by procedures in a programming language

SFSMD model

a = a + b;
c = c + d;

PS3

PS1 PS2PS2

PS3

PS1

a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
a = a + c;
}

a = 42;
b = a * 2;
for(c=0; c<100; c++)
{ b = c + a;
if (b < 0)

b = -b;
else

b = b + 1;
a = b * 10;
}

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 14

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 27

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)

• Hierarchical Concurrent FSM (HCFSM)
– FSM extended with hierarchy and concurrency

• Multiple FSMs composed hierarchically and in parallel

– Example: Statecharts

S4

S5

S3

S2

S1

HCFSM model

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 28

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)

• Hierarchical Concurrent FSM (HCFSM)

• Program State Machine (PSM)
– HCFSMD plus programming language

• States described by procedures
in a programming language

– Example: SpecC!

PS4

PS5

PS3

PS2

PS1

...
a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
else

c = c + e;
a = c;
}

...

PSM model

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 15

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 29

System-Level Description Languages

• Goals and Requirements
– Formality

• Formal syntax and semantics
– Executability

• Validation through simulation
– Synthesizability

• Implementation in HW and/or SW
• Support for IP reuse

– Modularity
• Hierarchical composition
• Separation of concepts

– Completeness
• Support for all concepts found in embedded systems

– Orthogonality
• Orthogonal constructs for orthogonal concepts

– Simplicity
• Minimality

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 30

System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

not supported partially supported supported

• Requirements• Requirements supported by existing languages

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 16

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 31

Past Present Future

6000+
Computer
Language

s

(Boston
Computer
Museum,

1995)

The Future of Design Languages

…can be predicted best from the past!

C++
1986

C
1978

VHDL
1987

Verilog
1984

Java
1995

Dates indicate year of publication of first reference book
and/or year of invention. Please correct me if I’m wrong!

SpecC
2000

SystemC
2002

SystemVerilog
2005

BlueSpec
2003?

?ConcurrenC
2009+

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 32

The Future of Design Languages

• ConcurrenC
– Formal Model of Computation (MoC)

– Representable in C-based SLDLS
• SystemC

• SpecC

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 17

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 33

System-Level Description Languages

• Examples in use today
– C/C++

• ANSI standard programming languages, software design
• traditionally used for system design because of practicality, availability

– SystemC
• C++ API and library
• initially developed at UCI, supported by Open SystemC Initiative

– SpecC
• C extension
• developed at UCI, supported by SpecC Technology Open Consortium

– SystemVerilog
• Verilog with C extensions

– Matlab
• specification and simulation in engineering, algorithm design

– UML
• unified modeling language, software specification, graphical

– SDL
• telecommunication area, standard by ITU, used in COSMOS

– SLDL
• formal specification of requirements, not executable

– etc.

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 34

System-Level Description Languages

• Examples in use today and coverage in this course
– C/C++

• ANSI standard programming languages, software design
• traditionally used for system design because of practicality, availability

 SystemC
• C++ API and library
• initially developed at UCI, supported by Open SystemC Initiative

 SpecC
• C extension
• developed at UCI, supported by SpecC Technology Open Consortium

– SystemVerilog
• Verilog with C extensions

– Matlab
• specification and simulation in engineering, algorithm design

 UML
• unified modeling language, software specification, graphical

– SDL
• telecommunication area, standard by ITU, used in COSMOS

– SLDL
• formal specification of requirements, not executable

– etc.

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 18

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 35

Separation of Concerns

• Fundamental Principle in Modeling of Systems

• Clear separation of concerns
– address separate issues independently

• System-Level Description Language (SLDL)
– orthogonal concepts

– orthogonal constructs

• System-level Modeling
– Computation

• encapsulated in modules / behaviors

– Communication
• encapsulated in channels

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 36

Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

s2

s1

s3

P1 P2

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 19

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 37

Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

• SpecC model

– Behaviors and channels

– Separation of computation and communication

– Plug-and-play

s2

s1

s3

P1 P2

B2

v2

v1

v3

B1
C1

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 38

Computation vs. Communication

• Protocol Inlining
– Specification model

– Exploration model

• Computation in behaviors

• Communication in channels

B2

v2

v1

v3

B1
C1

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 20

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 39

Computation vs. Communication

• Protocol Inlining
– Specification model

– Exploration model

• Computation in behaviors

• Communication in channels

– Implementation model

• Channel disappears

• Communication inlined into behaviors

• Wires exposed

B2

v2

v1

v3

B1
C1

B2B1

v2

v1

v3

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 40

v2

v1

IP in wrapper

Intellectual Property (IP)

• Computation IP: Wrapper model
B

Synthesizable
behavior

IP

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 21

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 41

Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 42

Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper

• Protocol inlining with wrapper

B1

v2

v1 IP

before after

v2

v1 IP
B1

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 22

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 43

Intellectual Property (IP)

• Computation IP: Adapter model
B

replacable
at any time

Synthesizable
behavior

T

Transducer

v2

v1
A

Adapter

IP

IP

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 44

Intellectual Property (IP)

• Computation IP: Adapter model
T

v2

v1

IP
A

B

replacable
at any time

Synthesizable
behavior

Transducer Adapter IP

• Protocol inlining with adapter

B1

v2

v1

IP
A

before

B1

v2

v1

IP

after

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 23

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 45

IP protocol channel in wrapper

C2

Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel

v2

v1

v3

C1

IP

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 46

Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel IP protocol channel in wrapper

v2

v1

v3

IP

• Protocol inlining with hierarchical channel

B1 B2

v2

v1

before

v2

v1

B1 B2

after

C1 C2

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 24

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 47

Intellectual Property (IP)

• Incompatible busses: Transducer insertion

T

v2

v1

v3

B1

v5

v4

IP
A

Transducer Adapter IPIP busSystem busSynthesizable
behavior

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 48

Intellectual Property (IP)

• Incompatible busses: Transducer insertion

• Protocol inlining with transducer

T

v2

v1

v3

B1

v5

v4

IP
A

TB1

v5

v4

IP

v2

v1

v3

Transducer Adapter IPIP busSystem busSynthesizable
behavior

after

