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Lecture 4: Overview

• Language Semantics
• Execution and Simulation Semantics

– Motivating Examples

• Simulation Semantics
– Discrete Event Simulation
– Parallel Discrete Event Simulation

• Formal Execution Semantics
– Time-Interval Formalism
– Abstract State Machines

• Project Discussion
– Assignment 2
– Assignment 3
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Language Semantics

• Concepts found in Embedded Systems
– Behavioral and structural hierarchy

– Concurrency

– Synchronization and communication

– Exception handling

– Timing

– State transitions

• SLDL must support these concepts

• Language semantics needed to define the meaning
– Semantics of execution (modeling, simulation, synthesis)

– Deterministic vs. non-deterministic behavior

– Preemptive vs. non-preemptive concurrency

– Atomic operations
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Language Semantics

• Language semantics are needed for
– System designer (understanding)
– Tools

• Validation (compilation, simulation)
• Formal verification (equivalence, property checking)
• Synthesis

– Documentation and standardization

• Objective:
– Clearly define the execution semantics of the language

• Requirements and goals:
– completeness
– precision (no ambiguities)
– abstraction (no implementation details)
– formality (enable formal reasoning)
– simplicity (easy understanding)
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Language Semantics

• Example: SpecC language
– Documentation

• Language Reference Manual (LRM)
 set of rules written in English (not formal)
• Abstract simulation algorithm
 set of valid implementations (not general)

– Reference implementation
• SpecC Reference Compiler and Simulator
 one instance of a valid implementation (not general)
• Compliance test bench
 set of specific test cases (incomplete)

– Formal execution semantics
• Time-interval formalism
 rule-based formalism (incomplete)
• Abstract State Machines
 fully formal approach (not easy to understand)
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Execution and Simulation Semantics

• Motivating Example 1
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{
int x;
B1 b1(x);
B2 b2(x);

void main(void)
{
b1; b2;

}
};

behavior B1(int x)
{
void main(void)
{
x = 5;

}
};

behavior B2(int x)
{
void main(void)
{
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 2
– Given:

– What is the value of x after the execution of B?

– Answer: The program is non-deterministic!
(x may be 5, or 6, or any other value!)

behavior B
{
int x;
B1 b1(x);
B2 b2(x);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(int x)
{
void main(void)
{
x = 5;

}
};

behavior B2(int x)
{
void main(void)
{
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 3
– Given:

– What is the value of x after the execution of B?

– Answer: x = 5

behavior B
{
int x;
B1 b1(x);
B2 b2(x);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(int x)
{
void main(void)
{
waitfor 10;
x = 5;

}
};

behavior B2(int x)
{
void main(void)
{
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 4
– Given:

– What is the value of x after the execution of B?

– Answer: The program is non-deterministic!
(x may be 5, or 6, or any other value!)

behavior B
{
int x;
B1 b1(x);
B2 b2(x);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(int x)
{
void main(void)
{
waitfor 10;
x = 5;

}
};

behavior B2(int x)
{
void main(void)
{
waitfor 10;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 5
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{
int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(
int x, event e)

{
void main(void)
{
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{
wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 6
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{
int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(
int x, event e)

{
void main(void)
{
notify e;
x = 5;

}
};

behavior B2(
int x, event e)

{
void main(void)
{
wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 7
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{
int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(
int x, event e)

{
void main(void)
{
waitfor 10;
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{
wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 8
– Given:

– What is the value of x after the execution of B?

– Answer: B never terminates!
(the event is lost)

behavior B
{
int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(
int x, event e)

{
void main(void)
{
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{
waitfor 10;
wait e;
x = 6;

}
};
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Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC
– available in LRM (appendix), good for understanding

 set of valid implementations

 not general (possibly incomplete)

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø
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Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait

waitfor

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITFOR to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO
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Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC
– Conforms to general Discrete Event (DE) Simulation

• utilizes delta-cycle mechanism (i.e. inner event loop)

• matches execution semantics of other languages
– SystemC

– VHDL

– Verilog

– Features
• clearly specifies the simulation semantics

• is easily understandable

• can be easily implemented

– Generality
• is one valid implementation of the semantics

• other valid implementations may exist as well
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Discrete Event Simulation (DES)
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10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta-cycle

• Time-cycle

 Partial temporal order with barriers

• Reference TLM Simulators
– Both SystemC and SpecC

use cooperative multi-threading

 A single thread is active at any time!

 Cannot exploit multiple parallel cores

– Example: SystemC

Discrete Event Simulation (DES)
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10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1 Parallel Multi-threading!?

• SLDL Execution Semantics
– SystemC prescribes

Cooperative Multi-Threading
• SystemC LRM defines:

“process instances execute without 
interruption”

 Preemptive scheduling forbidden!

– SpecC specifies
Preemptive Multi-Threading

• SpecC LRM defines:
”preemptive execution”,
”No atomicity is guaranteed”

 Preemptive scheduling assumed!

 Need critical regions with
mutually exclusive access: Channels!
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• Traditional DE Simulation Algorithm
– Threads managed

in READY queue

– Scheduler picks
a single thread
and executes it

– Time advances
• In delta-cycle

• In timed-cycle

Parallel Discrete Event Simulation (PDES)
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Parallel Discrete Event Simulation (PDES)

• Parallel DE Simulation Algorithm
– Threads managed

in READY queue

– Scheduler
picks N threads
and executes
them in parallel

– N = number
of available
CPU cores

– Time advances
• In delta-cycle

• In timed-cycle
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Parallel Discrete Event Simulation (PDES)
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10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• In the same time cycle

 Significant speed up!

– Cycle boundaries are
absolute barriers

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and  addressed 

(roll back)

Out-of-Order Parallel DES
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10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1• Out-of-Order PDES

– Threads execute in parallel iff
• in the same delta cycle, and

• In the same time cycle,

• OR if there are no conflicts!

– Needs compiler support for
static data conflict analysis!

 Preserves the accuracy of event 
handling and simulation time

 Allows as many threads in parallel
as possible

 Results in higher speedup!
• Reference: [DATE’12]
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Formal Execution Semantics

• Two examples of semantics definition:
1) Time-interval formalism

• formal definition of timed execution semantics
• sequentiality, concurrency, synchronization
• allows reasoning over execution order, dependencies

2) Abstract State Machines
• complete execution semantics of SpecC V1.0

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• influence on the definition of SpecC V2.0
• straightforward extension for SpecC V2.0
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Formal Execution Semantics

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of  par)

• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)

{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)
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• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time

– other statements execute in zero simulation time

behavior B
{ void main(void)

{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0  <=  Tstart(a)  < Tend(a)  <    1
0  <=  Tstart(w) < Tend(w)  =  10

10  <=  Tstart(b)  < Tend(b)  <   11

Formal Execution Semantics
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Formal Execution Semantics

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <=   Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f)  < Tend(f)  <=   Tend(B)

behavior B2
{ void main(void)
{ d; e; f; }

};

behavior B1
{ void main(void)
{ a; b; c; }

};

behavior B
{ void main(void)
{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!



EECS222A: SoC Description and Modeling Lecture 4

(c) 2012 R. Doemer 14

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2012 R. Doemer 27

Formal Execution Semantics

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <=   Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d)  < Tend(d) <=  Tend(B)

behavior B2
{ void main(void)
{ c; notify e; d; }

};

behavior B1
{ void main(void)
{ a; wait e;   b; }

};

behavior B
{ void main(void)
{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)
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• Time-interval formalism
– Atomicity

• Since there is no atomicity guaranteed,
a safe mechanism for mutual exclusion is necessary

• SpecC 2.0: Channels behave as Monitors!
– A mutex is implicitly contained in each channel instance

– Each channel method implicitly

» acquires the mutex when it starts execution, and

» releases the mutex again when it finishes
– wait and waitfor statements implicity (and atomically!)

» release an aquired mutex in a channel, and

» re-acquire the mutex before execution resumes

 This easily enables safe communication
without heavy restrictions to the implementation!

Formal Execution Semantics
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• Abstract State Machine (ASM)
– aka. Evolving Algebras (Y. Gurevich, 1987)
– ASM semantics already exist for

• Prolog, Concurrent Prolog
• C, C++, Java
• VHDL, VHDL-AMS, SystemC

– ASM semantics for SpecC published at ISSS’02

• ASM components
– Sequence of algebras (functions over domains):

states
– Rules define updates of functions:

state transitions

Formal Execution Semantics
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Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else  f(0,0) := 0

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else  f(0,0) := 0

ASM: Abstract State Machine

g    = 0
f(0) = undef
f(0,0) = 23
f(0,1) = 6

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else f(0,0) := 0

f(0) := 42
f(0,0) := 0

Update Set

Algebra A

g    = 0
f(0) = 42
f(0,0) = 0
f(0,1) = 6

Algebra A‘

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else  f(0,0) := 0

f(0) := 77
f(0,0) := 23

Update Set
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ASM: SpecC Kernel Semantics

• Phase 1: at least one BEHAVIOR is running

• Phase 2: no BEHAVIOR is running

ExecuteBehaviors

ProcessEvents

Check/ResetEvents

AdvanceTime

ProcessTimeouts

if events
if no events

exit
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ASM: SpecC Behavior Semantics

running

waiting

completed

interrupted

last stmt

interrupt

wait
waitfor

fork

event
timeout

join

trap

last stmt

status(p)  {running, waiting, interrupted, completed}
 BEHAVIOR:p
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ASM: SpecC Statement Semantics

• modelling execution of statements of behavior “Self”
Self executes <statement> 

programCounter(Self) = <statement>  status (Self) = running

• wait statement
if Self executes <wait(EventList)>
then status(Self) := waiting,

sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self) 

endif;

• notify statement
if Self executes <notify(EventList)>
then  e  EventList: notified(e)  := true, 

programCounter(Self) := nextStmt(Self)
endif;

• The simulation kernel sets each behavior to 
status(b):= running if e: notified(e) = true  e  sensitivity (b)
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ASM: SpecC Semantics Summary

• Formal Semantics of SpecC Execution 
• complete execution semantics of SpecC V1.0 by ASMs

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• can be easily extended to V2.0
• influenced the definition of SpecC V2.0
• SpecC ASM specification is comparable to 

other ASM specifications
• SystemC
• VHDL 93 
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Homework Assignment 2

• Task: Introduction to Canny Edge Detector
– Setup: use latest scc to edit, compile, and simulate

• source /opt/sce/bin/setup.csh
– Application Example

• Canny Edge Detector: SoC for edge detection in digital camera 

– Tools
• Image tools: command-line tools (pbm, pgm, pnm), eog, gimp
• Editor tools: SpecC-enhanced Eclipse

– Steps
• Download and compile with gcc
• Study the application
• Convert and compile with scc (timed!)

• Deliverables
– Source file: Canny.sc
– Description: Canny.txt

• Due
– By next week: April 27, 2012, 12pm (noon!)
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Homework Assignment 3

• Task: Structural Hierarchy for Canny Edge Detector
– Setup: use latest scc to edit, compile, and simulate

• source /opt/sce/bin/setup.csh

– Provided Files
• canny_a3_start.sc, Makefile
• golfcart.pgm, ref_golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

– Eclipse Support
• Outline View: Source code structure
• Behavior Hierarchy: SpecC structural hierarchy

• Deliverables
– Source file: canny.sc
– Description: canny.txt

• Due
– By next week: May 4, 2012, 12pm (noon!)
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Homework Assignment 3

• Structural Hierarchy for Canny Edge Detector
– Test bench Structure

• B i o behavior Main
• B i l |------ Monitor monitor
• B i c |------ Platform platform
• B i l | |------ DUT canny
• B i l | |------ DataIn din
• B i l | |------ DataOut dout
• C i l | |------ c_img_queue q1
• C i l | \------ c_img_queue q2
• B i l |------ Stimulus stimulus
• C i l |------ c_img_queue q1
• C i l \------ c_img_queue q2


