
EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 1

EECS 222A:
System-on-Chip Description and Modeling

Lecture 9

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 2

Lecture 9: Overview

• Course Administration

• Modeling with SystemC SLDL
– Assignment 6: Producer/Consumer Example in SystemC

– SystemC 2.0 Tutorial
• Presentation by Thorsten Groetker, Synopsys

• "Testbenches for Electronic System Level Design“
– Invited Presentation by

Dr. Wolfgang Mueller, Paderborn University, Germany

• Project Discussion: Canny Edge Detector
– Assignment 5

– Final Report

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 2

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 3

Course Administration

• Final Exam
– Date and time

• Wednesday, June 13, 2 - 4pm

– Location
• None (electronic submission)

– Format
• Submission of Final Project Report

– Submission script: turnin

– Directory name report

– File name CannyReport.pdf

– Hard deadline!
• June 13, 2012, 4pm

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 4

Course Administration

• Final Course Evaluation
– 9th through 10th week
– May 30, 2012, through June 10, 2012, 11:45pm
– Open until next Sunday night
– Online via EEE Evaluation application

• Evaluation of Course and Instructor
– Voluntary
– Anonymous
– Very valuable!

Please help to improve this class!
– Please spend 5 minutes!

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 3

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 5

Homework Assignment 6

• Producer/Consumer Example in SystemC
– Review the FIFO example by Stuart Swan

• See Lecture8_SystemC_Intro.pdf

– Compile and simulate the example using SystemC
• mkdir hw6; cd hw6
• cp /opt/pkg/systemc-
2.2.0/examples/sysc/simple_fifo/simple_fifo.cpp .

• g++ simple_fifo.cpp -I/opt/pkg/systemc-2.2.0/include
-L/opt/pkg/systemc-2.2.0/lib-linux –lsystemc
-o simple_fifo

• ./simple_fifo

– Translate the producer/consumer example from Assignment 1
to SystemC and simulate it

• Reference: /home/eecs222/EECS222A_S12/ProdCons.sc

• Deliverables
– Source file: SystemC_ProdCons.cpp
– Simulation log: SystemC_ProdCons.log

• Due
– By next week: June 1, 2012, 12pm (noon!)

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 6

Review: Producer/Consumer in SpecC

• Add behavior Main

• Add loop to S, name Prod

• Add loop to R, name Cons

• Compile and Simulate

• Create log file

behavior S(IS Port)
{
float X;
void main(void)
{ ...
Port.Send(X);
...

}
};

behavior R(IR Port)
{
float Y;
void main(void)
{...
Y=Port.Receive();
...

}
};

channel C
implements IS, IR

{
event Req;
float Data;
event Ack;

void Send(float X)
{ Data = X;
notify Req;
wait Ack;

}
float Receive(void)
{ float Y;
wait Req;
Y = Data;
notify Ack;
return Y;

}
};

interface IS
{
void Send(float);

};
interface IR
{
float Receive(void);

};

S R

Ack

Data

Req

Main

C

IS IR

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 4

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 7

SystemC 2.0 Tutorial

• Presentation by Thorsten Groetker,
Synopsys, 2001
– Motivation

– Models of Computation

– Model of Time, Process Activation

– Communication, Interfaces, and Channels

– Platform Modeling

– Transaction-level Model, Control Flow

– Benefits

– Summary

Invited Presentation

• "Test benches for
Electronic System Level Design“
– Dr. Wolfgang Mueller

C-LAB,
Paderborn University, Germany

• Topics
– Approaches and Languages

– Quality Issues, Functional Coverage,

– Mutation-based Testing

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 8

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 5

Project Discussion

• Application Example: Canny Edge Detector
– Model a SoC for Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 9

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 10

Project Discussion

• Structural Hierarchy for Canny Edge Detector
– Test bench Structure

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 6

Project Discussion

• SCE Chart of Test bench Structure

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 11

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 12

Project Discussion

• Structural Hierarchy for Canny Edge Detector
– Test bench Structure

• B i o behavior Main
• B i l |------ Monitor monitor
• B i c |------ Platform platform
• B i l | |------ DUT canny
• B i l | |------ DataIn din
• B i l | |------ DataOut dout
• C i l | |------ c_img_queue q1
• C i l | \------ c_img_queue q2
• B i l |------ Stimulus stimulus
• C i l |------ c_img_queue q1
• C i l \------ c_img_queue q2

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 7

Project Discussion

• Additional Level of Hierarchy inside DUT

– Potential for parallelism
• 5 pipeline stages in DUT (red color)

• Parallel decomposition of BlurX and BlurY blocks
in Gaussian Smooth behavior (green color)

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 13

Project Discussion

• Recoding the DUT
– Additional level of hierarchy inside DUT

• Behavioral Composition
– Parallel execution desirable

– Sequential execution as needed

• Structural Composition
– Standard channels, or

– Variables shared through port maps

– Canny Edge Detector: canny()
– gaussian_smooth()

» make_gaussian_kernel()

– derrivative_x_y()

– magnitude_x_y()

– non_max_supp()

– apply_hysteresis()

» follow_edges()

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 14

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 8

Project Discussion

• Pipelined DUT with parallelized Gaussian_Smooth

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 15

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 16

Project Discussion

• Pipelined DUT with parallelized Gaussian_Smooth
– B i p behavior DUT
– B i l |------ Apply_Hysteresis apply_hysteresis
– B i l |------ Derivative_X_Y derivative_x_y
– B i s |------ Gaussian_Smooth gaussian_smooth
– B i c | |------ BlurX_par blurX_par
– B i l | | |------ BlurX blurX1
– B i l | | |------ BlurX blurX2
– B i l | | |------ BlurX blurX3
– B i l | | \------ BlurX blurX4
– B i c | |------ BlurY_par blurY_par
– B i l | | |------ BlurY blurY1
– B i l | | |------ BlurY blurY2
– B i l | | |------ BlurY blurY3
– B i l | | \------ BlurY blurY4
– B i l | \------ Prep prep
– B i l |------ Magnitude_X_Y magnitude_x_y
– B i l \------ Non_Max_Supp non_max_supp

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 9

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 17

Project Discussion: Assignment 5

• Task: Refine the Canny Edge Detector using SCE
– Setup: use latest sce to evaluate and refine

• source /opt/sce/bin/setup.csh

– Provided Files
• canny_a5_start.sc, Makefile
• golfcart.pgm, ref_golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

– Tasks
• Architecture and Scheduling Refinement (ARM7TDMI plus HW accelerators)
• Network and Communication Refinement (AMBA_AHB plus DblHsk busses)
• Instruction Level Model (cycle-accurate instruction-set simulation, optional)

• Deliverables
– Source file: canny.tree
– Description: canny.txt

• Due
– By next week: May 25, 2012, 12pm (noon!)

Project Discussion: Initial Estimation

• Specification Model
– Import Canny_a5_start.sc

– Compile and simulate
• Untimed, 0 ms

• Estimation of Software-only Architecture
– Top-level Platform

– Allocate
• ARM7 of type ARM_7TDMI_10000_20000_0 for DUT

• IOunit1, IOunit2 of type HW_Virtual for DataIn, DataOut

– Estimate
• 1358.8 ms for DUT on ARM7

– Architecture Model
• Unscheduled timing: 716086 micro seconds

– Scheduled Model
• Scheduled timing: 1358694 micro seconds

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 18

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 10

Project Discussion: Initial Profile

• Computation Profile of Canny Algorithm

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 19

Project Discussion: Hardware Acceleration

• Hardware Blocks for Gaussian Smooth
– Allocate additional HW components

• HW_BlurX, HW_BlurY of type HW_Standard for blurX_par, blurY_par

– Estimation Results
• 501.9 ms for Canny on ARM7

• 4 x 23.9 ms for BlurX_par on BlurX

• 4 x 26.5 ms for BlurY_par on BlurY

• Refinement using SCE
– Architecture Model

• Unscheduled timing: 551471 micro seconds

– Scheduled Model
• ARM7 statically scheduled

• HW units not scheduled!
– We assume HW PEs internally process data in parallel

• Scheduled timing: 551471 micro seconds

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 20

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 11

Project Discussion: Real-Time Constraints

• Digital Still Image Camera
– Weak timing constraint

– 0.55 seconds delay for edge detection may be acceptable

• Digital Video Camera
– Hard real-time constraint

– 30 frames per second (FPS) are needed
• 30 FPS equals maximum delay of 33.3 ms

• 551 ms is 16.5 times too high

– Considering higher clock speed
• SCE assumptions:

– Default 100 MHz, max. 500 MHz for ARM_7TDMI

– Default 100 MHz, max. 500 MHz for HW_Standard

 This would result in 5x speedup!

– Architecture model with 500 MHz PEs: 110294 micro seconds

 Still 3.3x too slow for real-time video…

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 21

Project Discussion: Performance Optimization

• Computation Profile of DUT Pipeline

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 22

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 12

Project Discussion: Performance Optimization

• Computation Profile of DUT Operations

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 23

Project Discussion: Algorithm Recoding

• Observation: Majority of computation is floating-point
– In magnitude_x_y, 69.5% of all operations are floating-point

– In non_max_supp, 95.6% of all operations are floating-point

 Replace Floating- with Fixed-Point Computation!

• Benefits Estimation:
– ARM_7TDMI profiling tables provide very rough estimates

• Addition: 4 cycles for float, 1 cycle for int

• Multiplication: 8 cycles for float, 2 cycles for int

• Division: 40 cycles for float, 10 cycles for int

Can get 4x speedup for using fixed-point computation!

– Overall profile for Canny behavior
• 80.9% floating-point usage (against 19.1% integer)

• Assumption: 80.9% of CPU time can be sped up by 4x

• Potential gain: 80.9% / 4 + 19.1% = 39.325% (about 2.5x)

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 24

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 13

Project Discussion: Pipelining for Video

• For real-time streaming video, we need 30 FPS
– Throughput must be < 33.3 ms!

– Latency can be longer!

 Pipelining!
 Assuming fixed-point implementation for non_max_supp

 Estimated delay reduced to 40% of 290.4 ms = 116.16ms

 Assuming 5 pipeline stages
 Max. stage delay becomes 116.16 ms

 Stages 2 and 3 can even be combined

 Balancing by raising CPU speed
 Need to increase CPU frequency

by 116.16 / 33.3 = 3.5

 Change ARM7 to ≥ 350 MHz

 No need to increase HW frequency,
already below 33.3 ms (4x parallelism)

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 25

Project Discussion: Open Issues

• Entire discussion so far is based on estimated values!
– Estimation by table-based retargetable profiling

– Typically no absolute accuracy, only fidelity!

• Communication delays are not considered
– Scheduled architecture model assumes 0 communication delay

– Network and Link Refinement needed
• Result: Communication adds about 7 ms delay (about 1.3%)

• See example instructions on next slide!

• Cycle-Accurate Model
– To obtain absolute accuracy, we would need

• Cycle-accurate SW timing: Instruction Set Simulation

• Cycle-accurate HW timing: RTL Synthesis

 Both are beyond the objectives of this course,
so we will base our project only on the estimated times!

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 26

EECS222A: SoC Description and Modeling Lecture 9

(c) 2012 R. Doemer 14

Project Discussion: Communication Model

• Network and Link Refinement
– Instructions (following the scheduled architecture model above)

• Allocate AMBA_AHB as CPU/system bus (default parameters)

• Allocate HardwareBus as HW_Bus (default parameters)

• On AMBA_AHB, connect
– ARM7 as Master0

– HW_BlurX, HW_BlurY as Slave4, Slave5

– IOunit1, IOunit2 as Slave7, Slave8

• On HW_Bus, connect
– HW_BlurX as Master

– HW_BlurY as Slave

• Assign link parameters
– Use “Autofill all addresses”

– Use Polling on AMBA_AHB for all channels

– Use interrupt MasterSync0 on HW_Bus

– Generate TLM
• Simulated time: 558156 micro seconds

• Simulator run time: about 40 seconds

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 27

– Generate PAM
• Simulated time: 558693 micro seconds

• Simulator run time: about 6 minutes

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2012 R. Doemer 28

Project Discussion: Final Report

• Final Deliverable: Technical Report
– Title

• Modeling of a Canny Edge Detector System-on-Chip
for a Digital Camera

– Contents

• Describe the “story” of our project
– from initial C reference code

– via modeling and recoding in SpecC

– to a TLM refined by use of SCE

• Use the results (figures) of Assignments 2 through 5

• Conclude with a summary of the lessons learned

– Length
• About 12 pages

(including title page, figures, and references)

