
7/13/12	

1	

EECS10 DISCUSSION
Week3 Session2 Weiwei Chen 7/13/12

1 (c) W.Chen EECS UC Irvine

Assignment2 Feedback

7/13/12 (c) W.Chen EECS UC Irvine

2

¨  Great Job!
¨  Some small issues

¤ Output format
¤ Please use the testing numbers
¤ The original value of month and year is not saved when

month < 3. Display will be wrong after preprocess.

¨  Please refer to the course website for assignment
solutions

7/13/12	

2	

Functions

7/13/12 (c) W.Chen EECS UC Irvine

3

¨  C programming language distinguishes 3 constructs
around functions
¤ Function declaration
¤ Function definition
¤ Function call

¨  Please reflect on these 3 concepts and write down
you understanding

Functions

7/13/12 (c) W.Chen EECS UC Irvine

4

¨  Function declaration
¤  Declaration of function name,

parameters, and return type
¨  Function definition

¤  Extension of a function declaration
with a function body

¤  Definition of the function behavior
¤  May use local Vars for computation
¤  Return result value (if any)

¨  Function call
¤  Invocation of a function
¤  Supply argument for formal

parameters
¤  Result is the value returned

•  Function definition Example:
 double Absolute(double p)
 {
 double r;
 r = p > 0 ? p : -p;
 return r;
 }

•  Function call Example:
double x;
double y;
scanf(“please input a number: %lf”, &x);
y = Absolute(x);
printf(“The absolute value of %f is %f”,x, y);

•  Function declaration Example:
double Absolute(double p);

7/13/12	

3	

C program rules

7/13/12 (c) W.Chen EECS UC Irvine

5

¨  A function must be declared before it can be called.
¨  Multiple function declarations are allowed (if they

match).
¨  A function definition is an implicit function declaration.
¨  A function must be defined exactly once in a program.
¨  A function may be called any number of times.
¨  Please refer to Lecture 5.3 for more details.

Function call graph

7/13/12 (c) W.Chen EECS UC Irvine

6

¨  Please take a look at the example
¨  Activity: Draw the function call graph

7/13/12	

4	

Function Call Stack

7/13/12 (c) W.Chen EECS UC Irvine

7

¨  Stack Frames
¤ Keep track of active function calls

n Stack grows by one frame with each function call
n Stack shrinks by one frame with each completed function

¨  Source level debugger DDD demonstration
¤ Example: cube_abs.c

Scope

7/13/12 (c) W.Chen EECS UC Irvine

8

¨  Scope of an identifier
¤  Portion of the program where the identifier can be referenced
¤  aka. accessibility, visibility

¨  Scope rules
¤  Global variables: file scope

n  Declaration outside any function (at global level)
n  Scope in entire source file after declaration

¤  Function parameters: function scope
n  Declaration in function parameter list
n  Scope limited to this function body (entirely)

¤  Local variables: block scope
n  Declaration inside a compound statement (i.e. function body
n  Scope limited to this compound statement block (entirely)

¨  Example: cube_abs.c

7/13/12	

5	

Assignment Discussion

7/13/12 (c) W.Chen EECS UC Irvine

9

¨  Assignment 3, Part 2
¨  Menu-driven Calculator

EECS10 LABORATORY
Week3 Session1 Weiwei Chen 7/13/12

10 (c) W.Chen EECS UC Irvine

7/13/12	

6	

It is a time for programing!

7/13/12

11

¨  Raise your hand if you need help

(c) W.Chen EECS UC Irvine

