
EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 2

Lecture 1: Overview

• Programming Courses in EECS

• Course Administration
– Course overview

– Course web pages

• Getting Started
– Obtain an account on the EECS Linux server

– Work in the Linux system environment

• Review of C Programming
– History of C
– The first C program, HelloWorld.c

– General program structure, Addition.c

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 2

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 3

Programming Courses in EECS

• Introductory Programming
– EECS 10: uses C programming language (for EE)

– EECS 12: uses Python programming language (for CpE)

• Programming from the Ground Up
– EECS 20: starts with Assembly language (on bare CPU),

then introduces C programming language

• Advanced Programming Courses
 EECS 22: “Advanced C Programming” (in ANSI C)

– EECS 22L: “Software Engineering Project in C” (ANSI C/C++)

• Object-Oriented Programming
– EECS 40: introduces objects and classes, hierarchy,

and higher object-oriented programming concepts
using Java

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 4

EECS 22: Advanced C Programming

• Catalogue Data
– EECS 22 Advanced C Programming

(Credit Units: 3) F.

– C language programming concepts.

– Control flow, function calls, recursion.

– Basic and composite data types, static and dynamic data
structures.

– Program modules and compilation units.

– Preprocessor macros.

– C standard libraries.

– Prerequisite: EECS 20 (or EECS 10)

– (Design Units: 1)

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 3

EECS 22: Advanced C Programming

• “All you want to know about C Programming”
– Review and reinforce basic C programming concepts

– Study advanced features in detail

– Put concepts and tools to their best use

• Features
– Dynamic data structures using malloc(), free()

– Keywords static, register, auto, extern, volatile, …

– Advanced data types, variable-length arguments, …

– Libraries, Makefile, …

• Tools
– C preprocessor, compiler, and linker

– Debugger ‘gdb’ and ‘ddd’

– Dynamic memory allocation checker ‘valgrind’

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 5

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 6

EECS 22: Advanced C Programming

• Course Topics
– Review of C expressions, statements, control flow

– Primitive, composite, and user-defined data types

– Functions and parameter passing semantics

– Variable scope rules (global, static, auto, extern)

– Pointers and pointer arithmetic

– Dynamic memory allocation

– Dynamic data structures: linked lists, stacks, queues, …

– Function pointers and callback functions

– Preprocessor definitions, conditionals, and macros

– Program modules, header files, compilation units

– Compilation and linking process, Makefile

– C standard library, external libraries

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 4

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 7

EECS 22L: Software Eng. Project in C

• “Developing real C Programs in a Team”
– Hands-on experience with larger software projects

– Introduction to software engineering
• Specification, documentation, implementation, testing

– Team work

• Features
– Design efficient data structures, APIs

– Utilize programming modules, build libraries

– Develop and optimize contemporary software applications

• Tools
– Scripting ‘make’

– Version control ‘cvs’

– Testing and debugging with ‘gdb’, ‘gprof’, ‘valgrind’, …

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 8

Course Administration

• Course web pages online at
http://eee.uci.edu/13f/18040/
– Instructor information

– Course description and contents

– Course policies and resources

– Course schedule

– Homework assignments

– Course communication
• Message board (announcements and technical discussion)

• Email (administrative issues)

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 5

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 9

Getting Started

• Obtain an account on the EECS Linux servers
– Activation online via EECS web server:

https://newport.eecs.uci.edu/account.py

– Existing EECS accounts can be used
• (contact OIT for password reset, if forgotten)

• Login to the server
– Use a terminal with SSH protocol (secure shell, port 22)
– Connect to one of the EECS Linux servers

• crystalcove.eecs.uci.edu
• zuma.eecs.uci.edu

– Authorize yourself with UCInetID and EECS password

• Work in the Linux system environment
– Shell prints command prompt, awaiting input
– Use system commands: ls, pwd, cd, cp, rm, mkdir, …
– Refer to manual pages (man) for help on commands

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 10

Linux System Environment

• Linux shell commands
– echo print a message
– date print the current date and time
– ls list the contents of the current directory
– cat list the contents of files
– more list the contents of files page by page
– pwd print the path to the current working directory
– mkdir create a new directory
– cd change the current directory
– cp copy a file
– mv rename and/or move a file
– rm remove (delete) a file
– rmdir remove (delete) a directory
– man view manual pages for system commands

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 6

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 11

Linux System Environment

• Text editing
– vi standard Unix editor

– vim vi-improved (supports syntax highlighting)

– pico easy-to-use text editor

– emacs very powerful editor

– many others...

• Pick one editor and
make yourself comfortable with it!

• Categories of programming languages
– Machine languages (stream of 1’s and 0’s)

– Assembly languages (low-level CPU instructions)

– High-level languages (high-level instructions)

• Translation of high-level languages
– Interpreter (translation for each instruction)

– Compiler (translation once for entire unit)

– Hybrid (combination of the above)

• Types of programming languages
– Functional (e.g. Lisp)

– Structured (e.g. Pascal, C, Ada)

– Object-oriented (e.g. C++, Java, Python)

– High-level languages (high-level instructions)

– Compiler (translation once for entire unit)

– Structured (e.g. Pascal, C

–

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 12

Review of C Programming

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 7

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 13

History of C

• Evolved from BCPL and B
– in the 60’s and 70’s

• Created in 1972 by Dennis Ritchie (Bell Labs)
– first implementation on DEC PDP-11

– added concept of typing (and other features)

– development language of UNIX operating system

• “Traditional” C
– 1978, “The C Programming Language”,

by Brian W. Kernighan, Dennis M. Ritchie

– ported to most platforms

• ANSI C
– standardized in 1989 by ANSI and OSI

– standard updated in 1999

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 14

The C Programming Language

• What is C?
– Programming language

• high-level
• structured
• compiled

– Standard library
• rich collection of existing functions

• Why C?
– de-facto standard in software development
– code is portable to many different platforms
– supports structured and functional programming
– easy transition to object-oriented programming

• C++ / Java

– freely available for most platforms

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 8

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 15

The first C Program

• Program example: HelloWorld.c
/* HelloWorld.c: our first C program */
/* */
/* author: Rainer Doemer */
/* */
/* modifications: */
/* 09/28/04 RD initial version */

#include <stdio.h>

/* main function */

int main(void)
{

printf("Hello World!\n");
return 0;

}

/* EOF */

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 16

The first C Program

• Program comments
– start with /* and end with */

– are ignored by the compiler

– should be used to
• document the program code

• structure the program code

• enhance the readability

• #include preprocessor directive
– inserts a header file into the code

• standard header file <stdio.h>
– part of the C standard library

– contains declarations of standard types and functions
for data input and output (e.g. function printf())

/* HelloWorld.c: our first C program */
/* author: Rainer Doemer */
/* modifications: */
/* 09/28/04 RD initial version */

#include <stdio.h>

/* main function */

int main(void)
{

printf("Hello World!\n");
return 0;

}

/* EOF */

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 9

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 17

The first C Program

• int main(void)
– main function of the C program
– the program execution starts (and ends) here
– main must return an integer (int) value to the operating

system at the end of its execution
• return value of 0 indicates successful completion
• return value greater than 0 usually indicates an error condition

• function body
– block of code

(definitions and statements)
– starts with an opening brace ({)
– ends with a closing brace (})

• printf() function
– formatted output (to stdout)

• return statement
– ends a function and returns its argument as result

...

/* main function */

int main(void)
{

printf("Hello World!\n");
return 0;

}

/* EOF */

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 18

The first C Program

• Program compilation
– compiler translates the code into an executable program
– gcc HelloWorld.c

– compiler reads file HelloWorld.c and creates file a.out

– options may be specified to direct the compilation
• -o HelloWorld specifies output file name

• –ansi –Wall specifies ANSI code with all warnings

• Program execution
– use the generated executable as command
– HelloWorld

– the operating system loads the program (loader),
then executes its instructions (program execution),
and finally resumes when the program has terminated

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 10

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 19

The first C Program

• Example session: HelloWorld.c
% mkdir HelloWorld
% cd HelloWorld
% ls
% vi HelloWorld.c
% ls
HelloWorld.c
% ls -l
-rw-r--r-- 1 doemer faculty 263 Sep 28 22:11 HelloWorld.c
% gcc HelloWorld.c
% ls -l
-rw-r--r-- 1 doemer faculty 263 Sep 28 22:11 HelloWorld.c
-rwxr-xr-x 1 doemer faculty 6352 Sep 28 22:12 a.out*
% a.out
Hello World!
% gcc –Wall –ansi HelloWorld.c –o HelloWorld
% ls -l
-rwxr-xr-x 1 doemer faculty 6356 Sep 28 22:17 HelloWorld*
-rw-r--r-- 1 doemer faculty 263 Sep 28 22:17 HelloWorld.c
-rwxr-xr-x 1 doemer faculty 6352 Sep 28 22:12 a.out*
% HelloWorld
Hello World!

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 20

General Program Structure

• Initialization section
– Definition of variables (storage elements)

• Name, type, and initial value

• Input section
– read values from input devices into variables

• standard input functions

• Computation section
– perform the necessary computation on variables

• assignment statements

• Output section
– write results from variables to output devices

• standard output functions

• Exit section
– clean up and exit

Start

Input

Compute

Output

Finish

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 11

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 21

General Program Structure

• Program example: Addition.c (part 1/2)
/* Addition.c: adding two integer numbers */
/* */
/* author: Rainer Doemer */
/* */
/* modifications: */
/* 09/30/04 RD initial version */

#include <stdio.h>

/* main function */

int main(void)
{

/* variable definitions */
int i1 = 0; /* first integer */
int i2 = 0; /* second integer */
int sum; /* result */

...

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 22

General Program Structure

• Program example: Addition.c (part 2/2)
...

/* input section */
printf("Please enter an integer: ");
scanf("%d", &i1);
printf("Please enter another integer: ");
scanf("%d", &i2);

/* computation section */
sum = i1 + i2;

/* output section */
printf("The sum of %d and %d is %d.\n", i1, i2, sum);

/* exit */
return 0;

} /* end of main */

/* EOF */

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 12

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 23

General Program Structure

• Variable definition and initialization

– Variable type: int
• integer type, stores whole numbers (e.g. -5, 0, 42)
• many other types exist (float, double, char, ...)

– Variable name: i1
• valid identifier, i.e. name composed of letters, digits
• variable name should be descriptive

– Initializer: = 0
• specifies the initial value of the variable
• optional (if omitted, initial value is undefined)

/* variable definitions */
int i1 = 0; /* first integer */
int i2 = 0; /* second integer */
int sum; /* result */

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 24

General Program Structure

• Data input using scanf() function

– Function scanf() is defined in standard I/O library
• declared in header file stdio.h

– … reads data from the standard input stream stdin
• stdin usually means the keyboard

– … converts input data according to format string
• “%d” indicates that a decimal integer value is expected

– … stores result in specified location
• &i1 indicates to store at the address of variable i1

/* input section */
printf("Please enter an integer: ");
scanf("%d", &i1);

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 13

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 25

General Program Structure

• Computation using assignment statements

– Operator = specifies an assignment
• value of the right-hand side (i1 + i2)

is assigned to the left-hand side (sum)
• left-hand side is usually a variable
• right-hand side is a simple or complex expression

– Operator + specifies addition
• left and right arguments are added
• result is the sum of the two arguments

– Many other operators exist
• For example, -, *, /, %, <, >, ==, ^, &, |, ...

/* computation section */
sum = i1 + i2;

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 26

General Program Structure

• Data output using printf() function

– Function printf() is defined in standard I/O library
• declared in header file stdio.h

– … writes data to the standard output stream stdout
• stdout usually means the monitor

– … converts output data according to format string
• text (“The sum…”) is copied verbatim to the output

• “%d” is replaced with a decimal integer value

– … takes values from specified arguments (in order)
• i1 indicates to use the value of the variable i1

/* output section */
printf("The sum of %d and %d is %d.\n", i1, i2, sum);

EECS22: Advanced C Programming Lecture 1

(c) 2013 R. Doemer 14

EECS22: Advanced C Programming, Lecture 1 (c) 2013 R. Doemer 27

General Program Structure

• Example session: Addition.c
% vi Addition.c
% ls -l
-rw------- 1 doemer faculty 702 Sep 30 14:17 Addition.c
% gcc -Wall -ansi Addition.c -o Addition
% ls -l
-rwx------ 1 doemer faculty 6628 Sep 30 16:44 Addition*
-rw------- 1 doemer faculty 702 Sep 30 14:17 Addition.c
% Addition
Please enter an integer: 27
Please enter another integer: 15
The sum of 27 and 15 is 42.
% Addition
Please enter an integer: 123
Please enter another integer: -456
The sum of 123 and -456 is -333.
%

