EECS22: Advanced C Programming

EECS 22: Advanced C Programming
Lecture 2

Rainer D6mer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 2: Overview

* Review of the C Programming Language
— Lexical Elements (Tokens)
— Keywords
— Basic Types and Constants

— Operators and Expressions
« Arithmetic, Increment, Decrement, Assignment
 Relational, Logical, Bitwise, Shift, Conditional
» Others

— Operator Precedence and Associativity
— Formatted Input and Output

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 2

EECS22: Advanced C Programming

Review of the C Programming Language

» A C program consists of one or more translation units
(stored in files)

» A translation unit is formed by a sequence of tokens

* Tokens: Lexical Elements

Keywords
Identifiers
Constants

String Literals

Operators
Separators

int, while, return
X, MaxValue, f, main
42, 45.0, 123.456e-7, “Xx~

+, -

“Hello World!'\n”
* /, .

white space, /* comment */

EECS22: Advanced C Programming, Lecture 2

(c) 2013 R. Doemer

Keywords in C

* List of Keywords in ANSI-C

auto
break
case
char
const
continue
default
do

— double
— else
— enum
extern
— float
— for

— goto
—if

int

long
register
return
short
signed
sizeof
static

— These keywords are reserved!

— These cannot be used as identifiers.
— More keywords are reserved for C++

EECS22: Advanced C Programming, Lecture 2

(c) 2013 R. Doemer

struct
switch
typedef
union
unsigned
void
volatile
while

(c) 2013 R. Doemer

Lecture 2

EECS22: Advanced C Programming

|dentifiers and Separators

* ldentifiers
Sequence of letters and digits
The underscore (_) counts as a letter
The first character must be a letter
Upper and lower case letters are significant (case-sensitive)
Identifiers may have any length
« However, a compiler implementation may impose length limits
» Separators
— White space
* Blanks, tabs, newlines, form feeds
— Comments
* Start with /* and end with */
* May extend over multiple lines
« Do not nest (ho comment within a comment, neither in a string)

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 5

Basic Types and Constants

* Integer Types

— char Character, e.g. “a’, “b”, <17, <>~
« typical range 8 bit [-128,127]

— short int Short integer, e.g. -7, 0, 42
« typical range 16 bit [-32768,32767]

—int Integer, e.g. -7, 0, 42
« typical range 32 bit [-2147483648,2147483647]

— long int Long integer, e.g. -99L, 9L, 123L

* typical range 32 bit [-2147483648,2147483647]

long long int Very long integer, e.g. 12345LL
« typical range 64 bit
[-9223372036854775808,9223372036854775807]

* Integer Types can be

— signed negative and positive values (incl. 0)
— unsigned positive values only (incl. 0)
EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 6

(c) 2013 R. Doemer

Lecture 2

EECS22: Advanced C Programming

Basic Types and Constants

* Integer Constants
— Decimal representation

« Sequence of digits 0 to 9, not starting with O
e e.g. 1234567

Octal representation

« Sequence of digits 0 to 7, starting with O
* e.g. 0123 (which is 83 in decimal notation)

Hexadecimal representation

« Sequence of digits 0 to 9 and letters A to F, starting with 0x
e e.g. Ox1A2 (which is 418 in decimal notation)

Suffixes

= Uindicates unsigned type
= L indicates long type, LL indicates long long type

Note: Letters in integer constants are case-insensitive!

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 7

Basic Types and Constants

» ASCII Table: Numerical Representation of Characters
— American Standard Code for Information Interchange

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SlI
16 DLE| 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN| 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US
32 331! 34 " 35 # 36 $ 37 % 38 & 39 *
40 (41) 42 * 43 + 44 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 1 74 J 75 K 76 L 77 M 78 N 79 0
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [92 \ 93] 94 ~ 95 _
96 ~ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 1 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL
EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 8

(c) 2013 R. Doemer

Lecture 2

EECS22: Advanced C Programming Lecture 2

Basic Types and Constants

* Character String Constants: “Text strings”
Start and end with a double quote character ()
May not extend over a single line

Subsequent string constants are concatenated
Text formatting using Escape Sequences

< \n newline < \\ backslash character
-\t horizontal tab « \? question mark

< \v vertical tab -\’ single quote

< \b back space - \" double quote character
< \r carriage return = \ooo octal character, e.g. \O
 \f form feed = \xhh hexadecimal character,
«\a alert/bell e.g.\x41=A

— Example: “Hello” “ \"EECS 22\"'!\n”
— Note: Strings are of type const char *

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 9

Basic Types and Constants

* Floating Point Types

— float Floating point with single precision
* Example 3_.5F, -0.234F, 10e8F
— double Floating point with double precision

* Example 3.5, -0.23456789012, 10e88
— long double Floating point with high precision
* Example 12345678.123456e123L

* Floating Point Values are in many cases
Approximations only!
— Storage size of floating point values is fixed
— Many values can only be represented as approximations
— Example: 1.0/3.0 = .333333

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 10

(c) 2013 R. Doemer 5

EECS22: Advanced C Programming

Operators and Expressions

» Arithmetic Operators

» Increment and Decrement Operators
» Assignment Operator

* Augmented Assignment Operators

* Relational Operators

» Logical Operators

» Bitwise Operators

» Shift Operators

» Conditional Operator

» Other Operators

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 11

Arithmetic Operators

» Arithmetic Operators

— parentheses G)
— unary plus, minus +, -
— multiplication, division, modulo *,/, %
— addition, subtraction +, -

» Evaluation order of expressions

— binary operators evaluate left to right

— unary operators evaluate right to left

— by operator precedence

 ordered as in table above (higher operators are evaluated first)

» Arithmetic operators are available

— for integer types: all

— for floating point types: all except %

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 12

(c) 2013 R. Doemer

Lecture 2

EECS22: Advanced C Programming

Increment and Decrement Operators

» Counting in steps of one
— increment (add 1)
— decrement (subtract 1)

» C provides special counting operators
— increment operator: ++

e count++ post-increment (count = count + 1)

= ++count pre-increment (count = count + 1)
— decrement operator: —-

= count-- post-decrement (count = count - 1)

e ——count pre-decrement (count = count - 1)

— Note: Argument must be an integral Ivalue!
« Lvalue: an expression referring to an object (i.e. variable name)
* An Ivalue can be used as the left argument for an assignment!

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 13

Increment and Decrement Operators

 Difference between Pre- and Post- Operators
— pre- increment/decrement
« value returned is the incremented/decremented (new) value
— post- increment/decrement
« value returned is the original (old) value

— Examples:
eint n = 5; eint n = 5;
e int x = 0; e int x = 0;
* X = n++; ® X = ++n;
» x =5 > X =6
> n =26 > n =256
EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 14

(c) 2013 R. Doemer

Lecture 2

EECS22: Advanced C Programming

Assignment Operator

« Assignment operator: =
— evaluates right-hand argument

— assigns result to left-hand argument
» Evaluation order: right-to-left!

— Left-hand argument must be a Ivalue
— Result is the new value of left-hand argument

« Example:
—int a, b, c;
—int d = 5; /* initialization,
not an assignment */
—a = 42; /* assignment */

—b =c = 0; /* same as b = 0; ¢ = 0; */

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 15

Augmented Assignment Operators

* Augmented assignment operators: +=, *=, ...
— evaluates right-hand side as temporary result
— applies operation to left-hand side and temporary result
— assigns result of operation to left-hand side
» Evaluation order: right-to-left!
— Left-hand argument must be a Ivalue
» Example: Counter
— int ¢ = 0; /* counter starting from 0 */
— Cc = c + 1; /*counting by regular assignment */

—c += 1; /> counting by augmented assignment */
* Augmented assignment operators:
— 4=, -=, *=, /=, %=, <<=, >>=, I:' N=, &=
EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 16

(c) 2013 R. Doemer

Lecture 2

EECS22: Advanced C Programming

Relational Operators

» Comparison of values

- < less than
- > greater than
- <= less than or equal to
— >= greater than or equal to
— == equal to (remember, = means assignment!)
- I= not equal to
» Relational operators are defined for all basic types
— integer (e.g.5 < 6)

— floating point (e.9.7.0 < 7el)
* Result type is Boolean, but represented as integer

— false 0
— true 1 (or any other value not equal to zero)
EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 17

Logical Operators

» Operation on Boolean (truth) values

-1 “not” logical negation
- && ‘“and” logical and
- 11 ‘or logical or
e Truth table: x|y|!x|x&&y|x]ly
ojo| 1 0 0
o[1] 1 0 1
1/0| o 0 1
11| o 1 1

» Argument and result types are Boolean,
but represented as integer

— false 0
— true 1 (or any other value not equal to zero)
EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 18

(c) 2013 R. Doemer

Lecture 2

EECS22: Advanced C Programming

Logical Operators

» Lazy evaluation for logical and and logical or
Evaluation order left-to-right

Logical and has higher priority than logical or

Expression evaluation stops as soon as the result is known

» Logical and evaluates right-hand argument only if left-hand is true (1)
» Logical or evaluates right-hand argument only if left-hand is false (0)

Example:

v =710 & gO |l hO:;

e Function () is called first

« Function g() is called only if £() returned 1

e Function h() is called only if result of £()&&g() returned O
Exercise:

« Is it possible that only () and h() are called?

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 19

Bitwise Operators

» Operators for bit manipulation

— & bitwise “and” OXFF & OxFO = OxFO

— | bitwise inclusive “or” OxFF | OxFO = OxFF

— ~ bitwise exclusive “or” OxFF ~ OxFO = OxOF

— ~ bitwise negation ~0xFO = OxOF
(one’s complement)

— << left shift OxXOF << 4 = OxFO

— >> right shift OxFO >> 4 = OxOF

> Bitwise operators are only available for integral types
» Typical usage
— Mask out some bits from a value
e c = c & OxOF extracts lowest 4 bits from char c

— Set a set of bits in a value
e c = c | OxOF sets lowest 4 bits of char c

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 20

(c) 2013 R. Doemer

Lecture 2

10

EECS22: Advanced C Programming

Shift Operators

 Left-shift operator: X << n
— shifts x in binary representation n times to the left
» multiplies x n times by 2

— Examples
e 2X = X <<1
e 4x = X << 2
e X*2" = X << n
o 20 = 1<<n
» Right-shift operator: X >>n

— shifts x in binary representation n times to the right

» divides x n times by 2

— Examples
e x/2
* x/4
o x/2n

X >> 1
X >> 2
X >>n

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 21

Conditional Operator

» Conditional evaluation of values in expressions
* Question-mark operator:

test ? true-value : false-value

— evaluates the test

— if test is true, then the result is true-value

— otherwise, the result is false-value

* Examples:
— (4 <5) ? (42) : (4+8) evaluates to 42
- (2==1+2) ? (X) : (¥) evaluatesto y
- (Xx<0)? (X : evaluates to abs(x)

* Note: Exactly one of the two cases is evaluated

— Example: Test() ? fO : 90O;
If Test() returns true, () is called, otherwise g()

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 22

(c) 2013 R. Doemer

Lecture 2

11

EECS22: Advanced C Programming

 Comma operator:
* Array access operator:
* Function call:

* Member access:

» Pointer operators:
» Type casting

EECS22: Advanced C Programming, Lecture 2

Other Operators

exprl, expr2

— Left-to-right evaluation, result is result of right operand

expril[expr2]

— Detailed discussion in Lecture 4

exprl(expr2)

— Detailed discussion in Lecture 5

exprl.expr2,
exprl->expr2

— Detailed discussion in Lecture 11

&expr, *expr

— Detailed discussion in Lecture 12

(typename) expr

— Detailed discussion in Lecture 18

(c) 2013 R. Doemer 23

size of, type cast

— addition, subtraction
— shift left, shift right
— relational operators
— equality

— bitwise and

— bitwise exclusive or
— bitwise inclusive or
— logical and

— logical or

— conditional operator
— assignment operators
— comma operator

EECS22: Advanced C Programming, Lecture 2

— multiplication, division, modulo

Operator Precedence and Associativity

— parenthesis, array/member acc. (), [1, -, -> left to right
— unary operators, pointer op.,

!l = ++1 it +y iy *, &, rlght tO |eft
sizeof, (typename)

* /% left to right
+, - left to right
<<, >> left to right
<, <=, >z, > left to right
==, I= left to right
& left to right
n left to right
| left to right
&& left to right
11 left to right
?: left to right
= +=, -=,*= /=, ... rightto left
, left to right
(c) 2013 R. Doemer 24

(c) 2013 R. Doemer

Lecture 2

12

EECS22: Advanced C Programming

Formatted Input

* Formatted input using scanf()

— standard format specifier for integral values
* (unsigned) long long %0Ilu %0Ild

* (unsigned) long %lu %Id

* (unsigned) int %u %d

e (unsigned) short %hu %hd

e (unsigned) char %c (reads a character)
— standard format specifier for floating point values

= long double %LF

= double %lf

« float %
— standard format specifier for character strings

e char * %Ns (e.g. %20s)

= N indicates maximum string length accepted!
» Never use %s (potential buffer overflow)!

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer

25

Formatted Output

* Formatted output using printf()

— standard format specifier for integral values
e (unsigned) long long %Hlu %0ild

* (unsigned) long %lu %lId
e (unsigned) int %u %d
e (unsigned) short %hu %hd
e (unsigned) char %c (prints a character)
— standard format specifier for floating point values
= long double %LF
e double %F
- float %F
— standard format specifier for character strings
e char * %s
— standard format specifier for pointers
e pointer %p
EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer

26

(c) 2013 R. Doemer

Lecture 2

13

EECS22: Advanced C Programming Lecture 2

Formatted Output

« Detailed formatting sequence for integral values
= % flags width length conversion

— fTlags
e (none) standard formatting (right-justified)
- - left-justified output
- + leading plus-sign for positive values
-0 leading zeros

— field width

e (none) minimum number of characters needed
* integer width of field to be filled with output

— length modifier
e (none) int type

e h short int type
-1 long int type
- 11 long long int type
— conversion specifier
-d signed decimal value
e u unsigned decimal value
0 (unsigned) octal value
. X (unsigned) hexadecimal value using characters 0-9, a-f
e X (unsigned) hexadecimal value using characters 0-9, A-F
EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 27

Formatted Output

< Detailed formatting sequence for floating-point values
= % flags width precision length conversion

— Fflags
e (none) standard formatting (right-justified)
- - left-justified output
- + leading plus-sign for positive values
-0 leading zeros

— field width

e (none) minimum number of characters needed
* integer width of field to be filled with output

— precision
e (none) default precision (e.g. 6)
- .int number of digits after decimal point (for f, e, or E),

maximum number of significant digits (for g, or G)
length modifier
e (none) float or double type

L long double type
— conversion specifier
- F standard floating-point notation (fixed-point)

e eorE exponential notation (using e or E)
e gorG standard or exponential notation (using e or E)

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 28

(c) 2013 R. Doemer 14

EECS22: Advanced C Programming

Formatted Output

* Program example: Formatting.c (part 1/2)

#include <stdio.h>
/* main function */

int main(void)

{

/* output section */

printf(*"42 formatted as
printf(*"'42 formatted as
printf(*"42 formatted as
printf(*"42 formatted as
printf(*"42 formatted as
printf(*"42 formatted as
printf(*"42 formatted as

1%%d] -

1%%8d] -
1%%-8d] -
1%%+8d] -
1%%08d] -

| %%x| :
|%%o] :

/* Formatting.c: formatted output demo */
/* author: Rainer Doemer */
/* modifications: */
/* 09/26/11 RD version with strings */

J%d|\n", 42);
[%8d|\n", 42);
1%-8d\n", 42);
|%+8d|\n"", 42);
1%08d|\n", 42);
%x|\n", 42);
J%o|\n", 42);

EECS22: Advanced C Programming, Lecture 2

(c) 2013 R. Doemer

Formatted Output

* Program example: Formatting.c (part 2/2)

printf(*'\n");

printf(*'123.456 formatted
printf(*'123.456 formatted
printf(*'123.456 formatted
printf(*'123.456 formatted
printf(*'123.456 formatted
printf(*'123.456 formatted
printf(*'\n"");

printf(*"\""abc\" formatted

/* exit */
return 0O;
} /* end of main */

/* EOF */

as
as
as
as
as
as

as

| %%F] -
| %%e] :
1%%g] :

[%FI\n", 123.
|%e]\n", 123.
|%g\n", 123.

|%%12.4F] = |%12.4F]\n"
|%%12.4e]: |%12.4e]\n"
|%%12.4g]: |%12.4g]\n"

|%%12s] : |%12s]\n"

456) ;
456) ;
456) ;

123.456);
123.456);
123.456);

abc™);

EECS22: Advanced C Programming, Lecture 2

(c) 2013 R. Doemer

30

(c) 2013 R. Doemer

Lecture 2

15

EECS22: Advanced C Programming

Formatted Output

« Example session: Formatting.c

% vi Formatting.c

% Formatting

%

% gcc Formatting.c -o Formatting -Wall -ansi

42 formatted as |%d]: 142]

42 formatted as |%8d]: | 42]
42 formatted as |%-8d]: |42 |
42 formatted as |%+8d]: | +42]

42 formatted as |%08d]: |00000042|

42 formatted as |%x]|: 12a]

42 formatted as |%o]: 152]

123.456 formatted as |%f]: 1123.456000]
123.456 formatted as |%e]|: 11.234560e+02]
123.456 formatted as |%g]: 1123.456]
123.456 formatted as |%12.4fF|: | 123.4560]
123.456 formatted as |%12.4e|: | 1.2346e+02]
123.456 formatted as |%12.4g]: | 123.5]
"abc" formatted as |%12s]: | abc]

EECS22: Advanced C Programming, Lecture 2

(c) 2013 R. Doemer

31

(c) 2013 R. Doemer

Lecture 2

16

