
EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 2

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 2

Lecture 2: Overview

• Review of the C Programming Language
– Lexical Elements (Tokens)

– Keywords

– Basic Types and Constants

– Operators and Expressions
• Arithmetic, Increment, Decrement, Assignment

• Relational, Logical, Bitwise, Shift, Conditional

• Others

– Operator Precedence and Associativity

– Formatted Input and Output

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 2

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 3

Review of the C Programming Language

• A C program consists of one or more translation units
(stored in files)

• A translation unit is formed by a sequence of tokens

• Tokens: Lexical Elements
– Keywords int, while, return

– Identifiers x, MaxValue, f, main

– Constants 42, 45.0, 123.456e-7, ‘x’

– String Literals “Hello World!\n”

– Operators +, -, *, /, …

– Separators white space, /* comment */

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 4

Keywords in C

• List of Keywords in ANSI-C

– These keywords are reserved!
– These cannot be used as identifiers.
– More keywords are reserved for C++

– double

– else

– enum

– extern

– float

– for

– goto

– if

– struct

– switch

– typedef

– union

– unsigned

– void

– volatile

– while

– int

– long

– register

– return

– short

– signed

– sizeof

– static

– auto

– break

– case

– char

– const

– continue

– default

– do

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 3

Identifiers and Separators

• Identifiers
– Sequence of letters and digits
– The underscore (_) counts as a letter

– The first character must be a letter

– Upper and lower case letters are significant (case-sensitive)

– Identifiers may have any length
• However, a compiler implementation may impose length limits

• Separators
– White space

• Blanks, tabs, newlines, form feeds

– Comments
• Start with /* and end with */

• May extend over multiple lines

• Do not nest (no comment within a comment, neither in a string)

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 5

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 6

Basic Types and Constants

• Integer Types
– char Character, e.g. ‘a’, ‘b’, ‘1’, ‘*’

• typical range 8 bit [-128,127]

– short int Short integer, e.g. -7, 0, 42
• typical range 16 bit [-32768,32767]

– int Integer, e.g. -7, 0, 42
• typical range 32 bit [-2147483648,2147483647]

– long int Long integer, e.g. -99L, 9L, 123L
• typical range 32 bit [-2147483648,2147483647]

– long long int Very long integer, e.g. 12345LL
• typical range 64 bit
[-9223372036854775808,9223372036854775807]

• Integer Types can be
– signed negative and positive values (incl. 0)
– unsigned positive values only (incl. 0)

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 4

Basic Types and Constants

• Integer Constants
– Decimal representation

• Sequence of digits 0 to 9, not starting with 0

• e.g. 1234567

– Octal representation
• Sequence of digits 0 to 7, starting with 0

• e.g. 0123 (which is 83 in decimal notation)

– Hexadecimal representation
• Sequence of digits 0 to 9 and letters A to F, starting with 0x

• e.g. 0x1A2 (which is 418 in decimal notation)

– Suffixes
• U indicates unsigned type

• L indicates long type, LL indicates long long type

– Note: Letters in integer constants are case-insensitive!

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 7

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 8

Basic Types and Constants

• ASCII Table: Numerical Representation of Characters
– American Standard Code for Information Interchange

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL

8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SI

16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB

24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US

32 33 ! 34 " 35 # 36 $ 37 % 38 & 39 '

40 (41) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _

96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 5

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 9

Basic Types and Constants

• Character String Constants: “Text strings”
– Start and end with a double quote character (")

– May not extend over a single line

– Subsequent string constants are concatenated

– Text formatting using Escape Sequences
• \n newline

• \t horizontal tab

• \v vertical tab

• \b back space

• \r carriage return

• \f form feed

• \a alert / bell

– Example: “Hello” “ \"EECS 22\"!\n”
– Note: Strings are of type const char *

• \\ backslash character

• \? question mark

• \’ single quote

• \" double quote character

• \ooo octal character, e.g. \0

• \xhh hexadecimal character,
e.g. \x41 = A

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 10

Basic Types and Constants

• Floating Point Types
– float Floating point with single precision

• Example 3.5f, -0.234f, 10e8f

– double Floating point with double precision
• Example 3.5, -0.23456789012, 10e88

– long double Floating point with high precision
• Example 12345678.123456e123L

• Floating Point Values are in many cases
Approximations only!
– Storage size of floating point values is fixed

– Many values can only be represented as approximations
– Example: 1.0/3.0 = .333333

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 6

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 11

Operators and Expressions

• Arithmetic Operators

• Increment and Decrement Operators

• Assignment Operator

• Augmented Assignment Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Shift Operators

• Conditional Operator

• Other Operators

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 12

Arithmetic Operators

• Arithmetic Operators
– parentheses (,)

– unary plus, minus +, -

– multiplication, division, modulo *, /, %

– addition, subtraction +, -

• Evaluation order of expressions
– binary operators evaluate left to right

– unary operators evaluate right to left

– by operator precedence
• ordered as in table above (higher operators are evaluated first)

• Arithmetic operators are available
– for integer types: all
– for floating point types: all except %

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 7

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 13

Increment and Decrement Operators

• Counting in steps of one
– increment (add 1)
– decrement (subtract 1)

• C provides special counting operators
– increment operator: ++

• count++ post-increment (count = count + 1)
• ++count pre-increment (count = count + 1)

– decrement operator: --
• count-- post-decrement (count = count - 1)
• --count pre-decrement (count = count - 1)

– Note: Argument must be an integral lvalue!
• Lvalue: an expression referring to an object (i.e. variable name)
• An lvalue can be used as the left argument for an assignment!

Increment and Decrement Operators

• Difference between Pre- and Post- Operators
– pre- increment/decrement

• value returned is the incremented/decremented (new) value

– post- increment/decrement
• value returned is the original (old) value

– Examples:
• int n = 5;

• int x = 0;

• x = n++;

 x = 5

 n = 6

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 14

• int n = 5;

• int x = 0;

• x = ++n;

 x = 6

 n = 6

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 8

Assignment Operator

• Assignment operator: =
– evaluates right-hand argument

– assigns result to left-hand argument
Evaluation order: right-to-left!

– Left-hand argument must be a lvalue

– Result is the new value of left-hand argument

• Example:
– int a, b, c;

– int d = 5; /* initialization,
not an assignment */

– a = 42; /* assignment */

– b = c = 0; /* same as b = 0; c = 0; */

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 15

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 16

Augmented Assignment Operators

• Augmented assignment operators: +=, *=, ...
– evaluates right-hand side as temporary result

– applies operation to left-hand side and temporary result

– assigns result of operation to left-hand side

Evaluation order: right-to-left!

– Left-hand argument must be a lvalue

• Example: Counter
– int c = 0; /* counter starting from 0 */

– c = c + 1; /* counting by regular assignment */

– c += 1; /* counting by augmented assignment */

• Augmented assignment operators:
– +=, -=, *=, /=, %=, <<=, >>=, |=, ^=, &=

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 9

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 17

Relational Operators

• Comparison of values
– < less than

– > greater than

– <= less than or equal to

– >= greater than or equal to

– == equal to (remember, = means assignment!)

– != not equal to

• Relational operators are defined for all basic types
– integer (e.g. 5 < 6)

– floating point (e.g. 7.0 < 7e1)

• Result type is Boolean, but represented as integer
– false 0

– true 1 (or any other value not equal to zero)

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 18

Logical Operators

• Operation on Boolean (truth) values
– ! “not” logical negation

– && “and” logical and

– || “or” logical or

• Truth table:

• Argument and result types are Boolean,
but represented as integer
– false 0

– true 1 (or any other value not equal to zero)

x y !x x && y x || y

0 0 1 0 0

0 1 1 0 1

1 0 0 0 1

1 1 0 1 1

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 10

Logical Operators

• Lazy evaluation for logical and and logical or
– Evaluation order left-to-right

– Logical and has higher priority than logical or

– Expression evaluation stops as soon as the result is known
• Logical and evaluates right-hand argument only if left-hand is true (1)

• Logical or evaluates right-hand argument only if left-hand is false (0)

– Example:
• v = f() && g() || h();

• Function f() is called first

• Function g() is called only if f() returned 1

• Function h() is called only if result of f()&&g() returned 0

– Exercise:
• Is it possible that only f() and h() are called?

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 19

Bitwise Operators

• Operators for bit manipulation
– & bitwise “and” 0xFF & 0xF0 = 0xF0

– | bitwise inclusive “or” 0xFF | 0xF0 = 0xFF

– ^ bitwise exclusive “or” 0xFF ^ 0xF0 = 0x0F

– ~ bitwise negation ~0xF0 = 0x0F
(one’s complement)

– << left shift 0x0F << 4 = 0xF0

– >> right shift 0xF0 >> 4 = 0x0F

 Bitwise operators are only available for integral types

• Typical usage
– Mask out some bits from a value

• c = c & 0x0F extracts lowest 4 bits from char c

– Set a set of bits in a value
• c = c | 0x0F sets lowest 4 bits of char c

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 20

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 11

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 21

Shift Operators

• Left-shift operator: x << n
– shifts x in binary representation n times to the left
 multiplies x n times by 2
– Examples

• 2x = x << 1
• 4x = x << 2
• x * 2n = x << n
• 2n = 1 << n

• Right-shift operator: x >> n
– shifts x in binary representation n times to the right
 divides x n times by 2
– Examples

• x / 2 = x >> 1
• x / 4 = x >> 2
• x / 2n = x >> n

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 22

Conditional Operator

• Conditional evaluation of values in expressions

• Question-mark operator:
test ? true-value : false-value
– evaluates the test

– if test is true, then the result is true-value

– otherwise, the result is false-value

• Examples:
– (4 < 5) ? (42) : (4+8) evaluates to 42

– (2==1+2) ? (x) : (y) evaluates to y

– (x < 0) ? (-x) : (x) evaluates to abs(x)

• Note: Exactly one of the two cases is evaluated
– Example: Test() ? f() : g();

If Test() returns true, f() is called, otherwise g()

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 12

Other Operators

• Comma operator: expr1, expr2
– Left-to-right evaluation, result is result of right operand

• Array access operator: expr1[expr2]
– Detailed discussion in Lecture 4

• Function call: expr1(expr2)
– Detailed discussion in Lecture 5

• Member access: expr1.expr2,
expr1->expr2

– Detailed discussion in Lecture 11

• Pointer operators: &expr, *expr
– Detailed discussion in Lecture 12

• Type casting: (typename) expr
– Detailed discussion in Lecture 18

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 23

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 24

Operator Precedence and Associativity

– parenthesis, array/member acc.(), [], ., -> left to right
– unary operators, pointer op., !, ~, ++, --, +, -, *, &, right to left

size of, type cast sizeof, (typename)
– multiplication, division, modulo *, /, % left to right
– addition, subtraction +, - left to right
– shift left, shift right <<, >> left to right
– relational operators <, <=, >=, > left to right
– equality ==, != left to right
– bitwise and & left to right
– bitwise exclusive or ^ left to right
– bitwise inclusive or | left to right
– logical and && left to right
– logical or || left to right
– conditional operator ?: left to right
– assignment operators =, +=, -=, *=, /=, … right to left
– comma operator , left to right

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 13

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 25

Formatted Input

• Formatted input using scanf()
– standard format specifier for integral values

• (unsigned) long long %llu %lld
• (unsigned) long %lu %ld
• (unsigned) int %u %d
• (unsigned) short %hu %hd
• (unsigned) char %c (reads a character)

– standard format specifier for floating point values
• long double %Lf
• double %lf
• float %f

– standard format specifier for character strings
• char * %Ns (e.g. %20s)
• N indicates maximum string length accepted!
Never use %s (potential buffer overflow)!

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 26

Formatted Output

• Formatted output using printf()
– standard format specifier for integral values

• (unsigned) long long %llu %lld
• (unsigned) long %lu %ld
• (unsigned) int %u %d
• (unsigned) short %hu %hd
• (unsigned) char %c (prints a character)

– standard format specifier for floating point values
• long double %Lf
• double %f
• float %f

– standard format specifier for character strings
• char * %s

– standard format specifier for pointers
• pointer %p

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 14

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 27

Formatted Output
• Detailed formatting sequence for integral values

• % flags width length conversion
– flags

• (none) standard formatting (right-justified)
• - left-justified output
• + leading plus-sign for positive values
• 0 leading zeros

– field width
• (none) minimum number of characters needed
• integer width of field to be filled with output

– length modifier
• (none) int type
• h short int type
• l long int type
• ll long long int type

– conversion specifier
• d signed decimal value
• u unsigned decimal value
• o (unsigned) octal value
• x (unsigned) hexadecimal value using characters 0-9, a-f
• X (unsigned) hexadecimal value using characters 0-9, A-F

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 28

Formatted Output
• Detailed formatting sequence for floating-point values

• % flags width precision length conversion
– flags

• (none) standard formatting (right-justified)
• - left-justified output
• + leading plus-sign for positive values
• 0 leading zeros

– field width
• (none) minimum number of characters needed
• integer width of field to be filled with output

– precision
• (none) default precision (e.g. 6)
• .int number of digits after decimal point (for f, e, or E),

maximum number of significant digits (for g, or G)
– length modifier

• (none) float or double type
• L long double type

– conversion specifier
• f standard floating-point notation (fixed-point)
• e or E exponential notation (using e or E)
• g or G standard or exponential notation (using e or E)

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 15

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 29

Formatted Output

• Program example: Formatting.c (part 1/2)
/* Formatting.c: formatted output demo */
/* author: Rainer Doemer */
/* modifications: */
/* 09/26/11 RD version with strings */

#include <stdio.h>

/* main function */

int main(void)
{

/* output section */
printf("42 formatted as |%%d|: |%d|\n", 42);
printf("42 formatted as |%%8d|: |%8d|\n", 42);
printf("42 formatted as |%%-8d|: |%-8d|\n", 42);
printf("42 formatted as |%%+8d|: |%+8d|\n", 42);
printf("42 formatted as |%%08d|: |%08d|\n", 42);
printf("42 formatted as |%%x|: |%x|\n", 42);
printf("42 formatted as |%%o|: |%o|\n", 42);

...

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 30

Formatted Output

• Program example: Formatting.c (part 2/2)
...

printf("\n");
printf("123.456 formatted as |%%f|: |%f|\n", 123.456);
printf("123.456 formatted as |%%e|: |%e|\n", 123.456);
printf("123.456 formatted as |%%g|: |%g|\n", 123.456);
printf("123.456 formatted as |%%12.4f|: |%12.4f|\n", 123.456);
printf("123.456 formatted as |%%12.4e|: |%12.4e|\n", 123.456);
printf("123.456 formatted as |%%12.4g|: |%12.4g|\n", 123.456);
printf("\n");
printf("\"abc\" formatted as |%%12s|: |%12s|\n", "abc");

/* exit */
return 0;

} /* end of main */

/* EOF */

EECS22: Advanced C Programming Lecture 2

(c) 2013 R. Doemer 16

EECS22: Advanced C Programming, Lecture 2 (c) 2013 R. Doemer 31

Formatted Output

• Example session: Formatting.c
% vi Formatting.c
% gcc Formatting.c -o Formatting -Wall -ansi
% Formatting
42 formatted as |%d|: |42|
42 formatted as |%8d|: | 42|
42 formatted as |%-8d|: |42 |
42 formatted as |%+8d|: | +42|
42 formatted as |%08d|: |00000042|
42 formatted as |%x|: |2a|
42 formatted as |%o|: |52|

123.456 formatted as |%f|: |123.456000|
123.456 formatted as |%e|: |1.234560e+02|
123.456 formatted as |%g|: |123.456|
123.456 formatted as |%12.4f|: | 123.4560|
123.456 formatted as |%12.4e|: | 1.2346e+02|
123.456 formatted as |%12.4g|: | 123.5|

"abc" formatted as |%12s|: | abc|
%

