EECS 22: Assignment 3

Prepared by: Yasaman Samei, Prof. Rainer Doemer

October 17, 2013

’ Due on Monday 11/04/2013 11:00pm. Note: this is a two-week assignment. ‘

1 Digital Image Processing [100 points + 10 bonus points]

In this assignment you will learn how to break a program into multiple modules, and compile them into one program.
Based on the program PhotoLab for Assignment 2, you will be asked to develop some advanced digital image pro-
cessing (DIP) operations, partition them in separate modules, manipulate images using bit operations, and develop an
appropriate Makefile to compile your program with DEBUG mode on or off.

1.1 Introduction

In Assignment 2, you were asked to develop an image manipulation program PhotoLab by using DIP techniques. The
user can load an image from a file, apply a set of DIP operations to the image, and save the processed image in a file
by using the PhotoLab. This assignment will be based on Assignment 2.

1.2 Initial Setup

Before you start working on this assignment, do the following:

cd " /eecs22

mkdir hw3

cd hw3

In -s “eecs22/hw3/UCI_Peter.ppm UCI_Peter.ppm
In -s “eecs22/hw3/snowboard.ppm snowboard.ppm

In -s “eecs22/hw3/halloweenBat.ppm halloweenBat.ppm
In -s T“eecs22/hw3/halloweenPumpkin.ppm halloweenPumpkin.ppm
cp “eecs22/hw3/index.html ~/public_html/index.html

We will extend the PhotoLab program based on Assignment 2. Please reuse your PhotoLab.c file as the starting point

for this assignment. You may need to copy PhotoLab.c from the w2 folder to w3 first.

NOTE:

We will use the PPM image file UCI_Peter.ppm for this assignment. Once a DIP operation is done, you can save the

modified image as name.ppm, and it will be automatically converted to a JPEG image and sent to the folder public_html

in your home directory. You are then able to see the image in any web browser at: http://newport.eecs.uci.edu/~youruserid,

if required names are used. If you save images by other names, use the link http://newport.eecs.uci.edu/~youruserid/imagename.jpg
to access the photo.

Note that whatever you put in the public_html directory will be publicly accessible; make sure you don’t put files there
that you don’t want to share, i.e. do not put your source code into that directory.

1.3 Decompose the program into multiple modules

Please decompose the PhotoLab.c file into multiple modules and header files:

e PhotoLab.c: the main module contains the main() function, and the menu function PrintMenu() as well as
AutoTest().

e FilelO.c: the module for the function definitions of Readlmage() and Savelmage().
e FilelO.h: the header file for FileIO.c, with the function declarations of Readlmage() and Savelmage().
e Constants.h: the header file in which the constants to be used are defined.

e DIPs.c: the module for the DIP function definitions in Assignment 2, i.e. BlackNWhite(), VFlip(), HMirror(),
ColorFilter(), Sharpen(), Edge().

e DIPs.h: the header file for DIPs.c, with the DIP function declarations.

e Advanced.c: the module for the function defenition of new filters in Assignment 3, Posterize(), AddNoise(), and
Overlay().

e Advanced.h: the header file for Advanced.c, with the function declarations of Posterize(), AddNoise(), and
Overlay().

HINT: Please refer to the slides of Lecture 7 for an example of decomposing programs into different modules.

1.4 Compile the program with multiple modules using static shared library

The PhotoLab program is now modularized into different modules: PhotoLab, FileIO, DIPs and Advanced. In this
assignment we are using shared libraries to group the compiled object code files in to static libraries. Typically C
functions and methods which can be shared by more than one application are broken out of the application’s source
code, compiled and bundled into a library.

As shown in Lecture 7 to generate the libraries first compile the source code. Use ”-c¢” option for gce to generate the
object files for each module, e.g.

gce —c FileIO.c -o FileIO.o —ansi -Wall

% gecec —c DIPs.c -o DIPs.o —ansi —-Wall

o\

Libraries are typically names with the prefix ’1ib”. Here we want to create two libraires, libfilelO.a and libfilter:
ar rc libfileIO.a FileIO.o

ranlib libfileIO.a

ar rc libfilter.a DIPs.o Advanced.o

ranlib libfilter.a

o° o oe

o\

Linking with the library:
% gcc Photolab.o —-1fileIO —-1filter -L. -o Photolab

Execute the program:
% ./PhotoLab
program executes

o)
°

1.5 Using ’'make’ and "Makefile’

On the other hand, we can put the commands above into a Makefile and use the make utility to automatically build the
executable program from source code. Please create your own Makefile with at least the following targets:

e all: the target to generate the executable programs.

e clean: the target to clean all the intermediate files, e.g. object files, and the executable program(s).
e PhotoLabTest: the target to creat and run PhotoLabTest.(see below)

e PhotoLab: the target to generate the executable program PhotoLab.

To use your Makefile, please use this command:

% make all
The executable program PhotoLab shall then be automatically generated.

HINT: Please refer to the slides of Lecture 8 for an example on how to create a Makefile.

1.6 Advanced DIP operations

In this assignment, please add one more module named Advanced, consisting of Advanced.c and Advanced.h and
implement the advanced DIP operations described below.

Please reuse the menu you designed for Assignment 2 and extend it with the advanced operations. The user should be
able to select DIP operations from a menu as the one shown below:

Load a PPM image

Save an image in PPM and JPEG format
Change a color image to Black & White
Flip an image vertically

Mirror an image horizontally
Color-Filter an image (Red, Green, or Blue)
Sharpen an image

Sketch the edge of an image

Add Border to an image

10: Posterize the image

11: Add Noise to an image

12: Overlay an image

13: Bonus, Surprise Filter

14: Exit

O ~J o U b W

NeJ

Note: Options > 13: Surprise Filter’ is a bonus questions (10pts). You can amaze us with your new DIP function for
option 13.

1.6.1 Bit Manipulations: Posterize the image

Posterization of an image entails conversion of a continuous gradation of tone to several regions of fewer tones, with
abrupt changes from one tone to another. This was originally done with photographic processes to create posters. It
can now be done photographically or with digital image processing, and may be deliberate or may be an unintended
artifact of color quantization. (http://en.wikipedia.org/wiki/Posterization).

We are going to use bit manipulations to posterize the image.

e Posterize the image
As before, a pixel in the image is represented by a 3-tuple (r, g, b) where r, g, and b are the values for the
intensities of the red, green, and blue channels respectively.
The range of r, g, and b are from O to 255 inclusively. As such, we use unsigned char variables to store the
values of these three values.

http://en.wikipedia.org/wiki/Posterization

8th 7th 6th 5th 4th 3rd 2nd 1st 8th 7th 6th 5th 4th 3rd 2nd 1st

0(0|1|0(1 0|01 0(0|0|1(1|1|1|1

(a) Posterize the least 6 significant bits of the red channel for pixel(0,0)

8th 7th 6th 5th 4th 3rd 2nd 1st 8th 7th 6th 5th 4th 3rd 2nd 1st
o|j1({0|1(0|1|0/|0O0 0o(1/0(0|1(1|1(1

(b) Posterize the least 5 significant bits of the green channel for pixel(0,0)

8th 7th 6th 5th 4th 3rd 2nd 1st 8th 7th 6th 5th 4th 3rd 2nd 1st
1/{0|1|]0|0|0(|1]|1 1({0|1|]0|0|1(|1]|1

(c) Posterize the least 4 significant bits of the blue channel for pixel(0,0)

Figure 1: The example of posterizing the color channels.

To posterize the image, we are going to change the least n,n € {1,2,3,...8} significant bits of color intensity
values so as to change the tone of the pixels. Basically, we will change the nth least significant bit of the color
intensity value to be 0, and the least n — 1 bits to be all 1.

For example, assume that the color tuple of the pixel at coordinate(0,0) is (41, 84, 163). Therefore,
R[0][0] = 41;

G[0][0] = 84;

B[0][0] = 163;

In binary representation, the color tuple will be:
R[0][0] = 001010015;
GI[0][0] =010101007;
B[0][0] = 101000115;

Fig. [I] shows the operation for posterize for different least significant bits of the intensities for the red, green,
and blue channels.

As illustrated in Fig. [I(a)] in order to posterize the least 6 significant bits of the red intensity, we set the 6th bit
to be 0, and the 1st to the 5th bits to be 1s.

Similarly in Fig. [I(b)] to posterize the least 5 significant bits of the green intensity, we set the 5th bit to be 0,
and the 1st to the 4th bits to be 1s; and in Fig. to posterize the least 4 significant bits of the blue intensity,
we set the 4th bit to be 0, and the 1st to the 3th bits to be 1s.

Function Prototype: You need to define and implement the following function to do this DIP.

/* Posterize the image x/

void Posterize (unsigned char R[WIDTH] [HEIGHT],
unsigned char G[WIDTH] [HEIGHT],

unsigned char B[WIDTH] [HEIGHT],

unsigned int rbits,

unsigned int gbits,

unsigned int bbits);

Here, rbits, gbits, and bbits specify the number of least significant bits that need to be posterized. Since the size
of unsignedchar variable is 8 bits, the valid range of rbits, gbits, and bbits will be 1 to 8.

HINT: You will need to use bitwise operators, e.g. ‘&’, ‘<<, ¢>>", ¢

(a) Image without posterization (b) Image with posterization, where rbits = 6, gbits = 7, bbits = 8

Figure 2: The image and its posterized counterpart.

> for this operation.

Fig. 2] shows an example of our posterized image.

Once user chooses this option, your program’s output should be like:

please make your choice: 10

Enter the number of posterization bits for R channel (1 to 8):
Enter the number of posterization bits for G channel (1 to 8):
Enter the number of posterization bits for B channel (1 to 8):

"Posterize" operation is done!

O J o U w N

e

10:
11:
12:
13:
14:

Load a PPM image

Save an image in PPM and JPEG format
Change a color image to Black & White
Flip an image vertically

Mirror an image horizontally
Color-Filter an image (Red, Green, or Blue)
Sharpen an image

Sketch the edge of an image

Add Border to an image

Posterize the image

Add Noise to an image

Overlay an image

Bonus, Surprise Filter

Exit

Save the image with name ’poster’ after this step.

1.6.2 Add Noise to an image

In this operation, you add white noise to an image. You need to define and implement a function to do the
job. If the percentage of noise is n, then the number of noise added to the image is given by n* WIDTH x

~J

(a) Original image (b) Noisy image

Figure 3: An image and its noise corrupted counterpart.

HEIGHT /100, where WIDTH and HEIGHT are the image size. You need the knowledge of the random num-
ber generator provided in the HINT below. Figure [3]shows an example of this operation with n set to 9%.

Function Prototype: You need to define and implement the following function to do this DIP.

/+ Add noise to image =/

void AddNoise(int n,

unsigned char R[WIDTH] [HEIGHT],
unsigned char G[WIDTH] [HEIGHT],
unsigned char B[WIDTH] [HEIGHT]) ;

Here, n specifies the percentage of added noise.

Figure [3shows an example of this operation. Once the user chooses this option, your program’s output should
like this:

Please make enter your choice: 11

Please input noise percentage:9

"AddNoise" operation is done!

Load a PPM image

Save an image in PPM and JPEG format
Change a color image to Black & White
Flip an image vertically

Mirror an image horizontally
Color-Filter an image (Red, Green, or Blue)
Sharpen an image

Sketch the edge of an image

Add Border to an image

Posterize the image

Add Noise to an image

Overlay an image

O J o U wN

o e
N P O W

13: Bonus, Surprise Filter
14: Exit
please enter your choice:

Save the image with name 'noise’ after this step.

HINT: To generate the initial random number, you have to use a random number generator which is provided
by the C standard function rand(). This function generates a random number of type int in the range of 0 to
RANDyAX. This function is declared in the header file stdlib.h.

In practice, no computer function can produce truly random data; they only produce pseudo-random numbers.
These are computed by a formula and the number sequences they produce are repeatable. A seed value is usually
used by the random number generator to generate the first number. Therefore, if you use the same seed value
all the time, the same sequence of “random” numbers will be generated (i.e. your program will always produce
the same “random” number in every program run). To avoid this, we can use the current time of the day to set
the random seed, as this will always be changing with every program run. With this trick, your program will
produce different numbers every time you run it.

To set the seed value, you have to use the function srand(), which is also declared in the header file std1ib. h.
For the current time of the day, you can use the function time(), which is defined in the header file time.h
(stdlib.h and time.h are header files just like the stdio.h file that we have been using so far).

In summary, use the following code fragments to generate the random number for the noise:

1. Include the stdlib.h and t ime.h in coreponding header file:

#include <stdlib.h>
#include <time.h>

2. Include the following lines at the beginning of your AddNoise function:

/* initialize the random number generator with the current time =/
srand (time (NULL)) ;

3. To simulate drawing a card from the shuffled deck, use the following statement:

/* generate a random pixel =/
X = rand() % WIDTH; // You need to define the variable x.
y = rand() % HEIGHT; // You need to define the variable x.

The integer variables x and y then will have a random values in the range from WIDTH and HEIGHT
accordingly.

1.6.3 Image Overlay

This function overlies the current image with a second image. In our program, we will put an image of a snow-
board and an image with Halloween witch and pumpkin on the original image.

To start the implementation, you need to prompt the user to enter the file name of the second image first, and
then you read that image in the beginning of the overlay function (Readlmage() for loading). In this assignment,
the second image is snowboard.ppm(600x475 pixels same size as original image). The user also need to enter
the position of the overlay with coordinates (x, y).

Take a look at Fig. Fig. and Fig.[A(c)]images. Note that they have white backgrounds which are incon-
sistent with our original image. To achieve the overlay effect, we will treat the white background as transparent
color. That is, each of the non-background pixels will be overlaid to a position in the original image, whereas
background pixels will stay as in the original image. Whether a pixel in images (a) through (c) is a background
pixel or not can be decided by the RGB values of this pixel. More specifically, if a pixel has RGB value greater
than (250, 250, 250) (r>250, g>250, b>250) which represents white background, this pixel should not be put
onto the original image.

5 s o =

(a) Snowboard image (b) Halloweenl image (c) HalloweenlI image

(d) Overlay the SnowBoard image at position (0,0), and the Hal- (e) Overlay the third image at position (70,65)
loween image at position (50,30)

Figure 4: An image and the overlayed image.

Function Prototype: You need to define and implement the following function to do this DIP.

/+Overaly an image onto the original imagex/
void Overlay (char fname[SLEN],

unsigned char R[WIDTH] [HEIGHT],

unsigned char G[WIDTH] [HEIGHT],

unsigned char B[WIDTH] [HEIGHT],

unsigned int x_offset, unsigned int y_offset);

Here, x_of fset, y_of fset are the overlay cordinates. Once user chooses this option, your program’s output
should be like:

Please make your choice: 12
Please input the file name for the second image: Snowboard
Please input x coordinate of the overlay image: 0O
Please input y coordinate of the overlay image: 0
Snowboard.ppm was read successfully!
"Image Overlay" operation is done!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to Black & White

4: Flip an image vertically

5: Mirror an image horizontally

Color-Filter an image (Red, Green, or Blue)
Sharpen an image
Sketch the edge of an image
9: Add Border to an image

10: Posterize the image

11: Add Noise to an image

12: Overlay an image

13: Bonus, Surprise Filter

14: Exit
Please make your choice: 12

O ~J o

Please input the file name for the second image: HalloweenBat

Please input x coordinate of the overlay image: 50
Please input y coordinate of the overlay image: 30
HalloweenBat .ppm was read successfully!
"Image Overlay" operation is done!
Load a PPM image
Save an image in PPM and JPEG format
Change a color image to Black & White
Flip an image vertically
Mirror an image horizontally
Color-Filter an image (Red, Green, or Blue)
Sharpen an image
Sketch the edge of an image
Add Border to an image
10: Posterize the image
11: Add Noise to an image
12: Overlay an image
13: Bonus, Surprise Filter
14: Exit
Please make your choice:

O ~J o U b w N

Nej

The effect can be seen in Figure @ In Fig. f(d)] positions are chosen as (0,0) for the Fig. A(a)l and (50,30) for

Fig.[A(c)]. The Fig.[A(b)] is overlaid on UCI_Peter at (70,65) in Fig. fi(e)}
Save the image with the name “overlay” after this step.

1.7 Surprise DIP Function

The bonus is yours if you design a new DIP filter. You can get the idea from availabel filters on the web or you can
design your own. The full 10 points is for a DIP filter which requires pixels manipulation as well as a nice output image.

1.8 Test all functions

Finally, you are going to complete the AutoTest() function to test all the functions. In this function, you are going to
call DIP functions one by one and save the results. The function is for the designer to quickly test the program, so you

should supply all necessary parameters when testing. The function should look like:

void AutoTest (unsigned char R[WIDTH] [HEIGHT], unsigned char G[WIDTH] [HEIGHT],

unsigned char B[WIDTH] [HEIGHT])

{
char fname[SLEN] = "UCI_Peter";

char sname[SLEN];

ReadImage (fname, R, G, B);
BlackNWwhite (R, G, B);

SavelImage ("bw", R, G, B);

printf ("Black & White tested!\n\n");

ReadImage (fname, R, G, B);
Posterize (R, G, B, 6, 7, 8);
SaveImage ("edge", R, G, B);
printf ("Posterize tested!\n\n");

ReadImage (fname, R, G, B);
EdgeDetection (50, R, G, B);
SaveImage ("edge", R, G, B);
printf ("EdgeDetection tested!\n\n");

Please use 6, 7, 8 as the posterize bits for the red, green, and blue channels. Please use 10 as the percentage for
noise addition. For overlay use the HalloweenBat.ppm image at position (100,150).

Once user chooses this option, your program’s output should be like:

Please make your choice: 13

UCI_Peter.ppm was read successfully!
bw.ppm was saved successfully.
bw.jpg was stored for viewing.

Black & White tested!

UCI_Peter.ppm was read successfully!
poster.ppm was saved successfully.
poster.jpg was stored for viewing.
Posterize tested!

UCI_Peter.ppm was read successfully!
edge.ppm was saved successfully.
edge. jpg was stored for viewing.
EdgeDetection tested!

Please implement the AutoTest() function in Photolab.c. Since the AuroTest() function will call the functions in the
DIPs.c and Advanced.c mosdules, please include the header files properly. Also, be sure to adjust your Makefile for
proper dependencies.

10

1.9 Support for the DEBUG mode

In C program, macros can be defined as preprocessing directives. Please define a macro named "DEBUG” in your
source code to enable / disable the messages shown in the AutoTest() function.

When the macro is defined, the AutoTest() function will output as in Section @ Otherwise, there should be no output
shown on the screen.
Please decide in which function and in which module this ’DEBUG’’ macro needs to be added.

1.10 Extend the Makefile

For the Makefile, please
o extend it properly with the targets for your program with the new module: Advanced.c.
e generate two executable programs

1. PhotoLab with the user interactive menu and the DEBUG mode off.

2. PhotoLabTest without the user menu, but with only the AuroTest() function for testing, and turn the DE-
BUG mode on. Note that we can thus use the same source files to generate two different programs.

Define two targets to generate these two programs. Please use the ”-D” option for gcc to enable / disable the
DEBUG mode instead of defining the ’DEBUG” macro in the source code. You may need to define more targets
to generate the object files with different DEBUG modes.

2 Implementation Details

2.1 Function Prototypes

For this assignment, you need to define the following functions in Advanced.h:

/x%% function declarations x*%x/

/+ Posterize the image «/

void Posterize (unsigned char R[WIDTH] [HEIGHT],
unsigned char G[WIDTH] [HEIGHT],

unsigned char B[WIDTH] [HEIGHT],

unsigned int rbits,

unsigned int gbits,

unsigned int bbits);

/* Add noise to image */

void AddNoise(int n,

unsigned char R[WIDTH] [HEIGHT],
unsigned char G[WIDTH] [HEIGHT],
unsigned char B[WIDTH] [HEIGHT]) ;

/*Overaly an image onto the original imagex/
void Overlay (char fname[SLEN],

unsigned char R[WIDTH] [HEIGHT],

unsigned char G[WIDTH] [HEIGHT],

unsigned char B[WIDTH] [HEIGHT],

unsigned int x_offset, unsigned int y_offset);

You may want to define other functions as needed.

11

2.2 Global constants

The following global constants should be defined in Constants.h(please don’t change their names):

#define WIDTH 600 /* Image width =/
#define HEIGHT 475 /% image height «*/
#define SLEN 80 /% maximum length of file names */

Please make sure that you properly include this header file when necessary.

3 Budgeting your time

You have two weeks to complete this assignment, but we encourage you to get started early as there is a little more
work than for Assignment 2. We suggest you budget your time as follows:

o Week 1:

1. Decompose the program into different modules, i.e. PhotoLab.c, FileIO.c, FileIO.h, Constants.h, DIPs.c,
DIPs.h.

2. Create your own Makefile and use it to compile the program.

3. Create module Advanced.c, Advanced.h, and implement an initial advanced DIP function.
o Week 2:

1. Implement all the advanced DIP functions.
2. Implement the AutoTest() function.

3. Figure out how to enable/disable the DEBUG mode in the source code and add targets to the Makefile
accordingly.

4. Script the result of your programs and submit your work.

4 Script File

To demonstrate that your program works correctly, perform the following steps and submit the log as your script file:
1. Start the script by typing the command: script.
2. Compile and run PhotoLab by using your Makefile.
3. Exit the PhotoLab.
4. Compile and run PhotoLabTest by using your Makefile.
5. Clean all the object files and executable programs by using your Makefile.
6. Stop the script by typing the command: exit.
7. Rename the script file to PhotoLab.script.

NOTE: make sure to use exactly the same names as shown in the above steps when saving modified images! The script
file is important, and will be checked in grading; you must follow the above steps to create the script file. Please don’t
open any text editor while scripting !!!

12

5 Submission

Use the standard submission procedure to submit the following files as the whole package of your program:
e PhotoLab.c
e PhotoLab.script
e FilelO.c
e FilelO.h
e Constants.h
e DIPs.c
e DIPs.h
e Advanced.c
e Advanced.h
o Makefile

Please leave the images generated by your program in your public_html directory. Don’t delete them as we may
consider them when grading! You don’t have to submit any images.

13

	Digital Image Processing [100 points + 10 bonus points]
	Introduction
	 Initial Setup
	Decompose the program into multiple modules
	Compile the program with multiple modules using static shared library
	Using 'make' and 'Makefile'
	Advanced DIP operations
	Bit Manipulations: Posterize the image
	 Add Noise to an image
	 Image Overlay

	 Surprise DIP Function
	Test all functions
	Support for the DEBUG mode
	Extend the Makefile

	 Implementation Details
	 Function Prototypes
	 Global constants

	Budgeting your time
	 Script File
	Submission

