EECS 22: Advanced C Programming Assignment 1

Outline

- Rabbit Ecosystem and Demography
- Compile
- Assignment Submission
- Verify the Submission

Assignment 1

Rabbit Ecosystem and Demography

- Write a C program that analyzes rabbit and wolf population in an island and its influence on the grass area.
- Grass area in the island grows at a constant rate every year but is gradually depleted due to continuous consumption by rabbits.
- Rabbit population grows at a constant rate every year but is constrained by wolves attack.
- Wolf population grows at a constant rate every year but rapid decline occur in regular intervals through spread of epidemic diseases.
- Wolf Population = Previous Wolf Population * (1+ Wolf Growth Rate/100)
- Rabbit Population = Previous Rabbit Population * (1+ Rabbit Growth Rate/100) Previous Wolf Population
- Grass Area = Previous Grass Area * (1 + Grass Growth Rate /100) Previous Rabbit Population * 1.2

Assignment 1

```
Input: Enter wolf population (initial): 10
Enter rabbit population (initial): 2300
Enter total grass area, initially fertile (in sq yards): 40000
Enter wolf annual growth rate (in percentage): 20
Enter rabbit annual growth rate (in percentage): 30
Enter grass area annual growth rate (in percentage): 5
```

Output:

Year

iear	woll population Rabbit popu	lation Available Grass Area
0	10 2300	40000.00
1	12 2490	39240.00
2	14 2637	38214.00
3	16 2728	36960.30
4	19 2746	35534.72
5	22 2619	34016.25
6	11 2304	32574.26
7	13 2445	31438.18
8	15 2528	30076.09
9	18 2536	28546.29
10	21 2396	26930.40
11	10 2064	25401.72
12	12 2183	24195.01
13	14 2237	22785.16
14	16 2208	21240.02
15	19 2070	19652.42
16	9 1741	18151.04
17	10 1813	16969.39
18	12 1856	15642.26
19	14 1812	14197.18
20	16 1655	12732.63

Wolf population Rabbit population

Available Grass Area

Assignment 1:Notes

- Use a loop so that table is printed for 20 consecutive years
- For year 0, only initial values are displayed
- For available grass area, use double type variables, and print out exactly 2 digits after the decimal point
- Ensure that all the numbers in the output table line up nicely so that the decimal points are all at the same column position.
- Use suitable number of tab characters in print statements to align the table output in same fashion as above.
- Wolf and rabbit population are integers, and fractions due to growth rate multiplications need to be ignored (equivalent to flooring).

Submit three files:

- rabbit.c: the code
- rabbit.txt: a text file briefly explaining how you designed your program
- rabbit.script: a typescript which shows that you compile your program and run it

Bonus: Minimum and maximum population

- Calculate and print the minimum and maximum population of rabbits and wolves over these 20 years.
- Along with the minimum and maximum values, also print the corresponding year.

• Example :

```
Wolf population was minimum as 9 in year 16
Wolf population was maximum as 22 in year 5
Rabbit population was minimum as 1655 in year 20
Rabbit population was maximum as 2746 in year 4
```

Assignment 1

• Compiling

```
% gcc rabbit.c -ansi -Wall -o rabbit
% ./rabbit
```

Assignment Submission

Log in to crystalcove

```
hw1/
% /ecelib/bin/turnin22
EECS 22 FALL 2013:
Project "hw1" submission for eecs22
Due date: Mon Oct 7 23:00:00 2013
* Looking for files:
* rabbit.c
* rabbit.txt
* rabbit.script
Please confirm the following:
"I have read the Section on Academic Honesty in the
UCI Catalogue of Classes (available online at
http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0) *
and submit myoriginal work accordingly."
Please type YES to confirm.
change mode
Submit rabbit.c [yes, no]? y
File rabbit.c has been submitted
Submit rabbit.script [ves, no]? v
File rabbit.script has been submitted
Submit rabbit.txt [ves, no]? v
File rabbit.txt has been submitted
Submitted on Tue Sep 17 12:38:10 2013
You just submitted file(s):
rabbit.c
rabbit.script
rabbit.txt
```

Verify Code Submission

