EECS 22: Assignment 3
Digital Image Processing

Due on Monday 11/04/2013 11:00pm
Note: this is a two-week assignment

UClIrvine

University of California, Irvine

Outline

« Decompose a program into multiple modules

o Compile the program with multiple modules using
static shared library

e Makefile

 Advanced DIP operation
— Bit Manipulations: Posterize the image
— Add Noise to an image
— Image Overlay
— Bonus: Surprise DIP Function

« DEBUG mode support
o Extend the Makefile

Decompose a program into multiple
modules

0 PhotolLab.c: the main module contains the main() function, and the menu function
PrintMenu() as well as AutoTest().

QO FilelO.c: the module for the function definitions of Readimage() and Savelmage().

QO FilelO.h: the header file for FilelO.c, with the function declarations of Readimage() and
Savelmage().

O Constants.h: the header file in which the constants to be used are defined.

O DIPs.c: the module for the DIP function definitions in Assignment 2, i.e. BlackNWhite(),
VFlip(), HMirror(), ColorFilter(), Sharpen(), Edge().

O DIPs.h: the header file for DIPs.c, with the DIP function declarations.

0 Advanced.c: the module for the function defenition of new filters in Assignment 3,
Posterize(), AddNoise(), and Overlay().

0 Advanced.h: the header file for Advanced.c, with the function declarations of Posterize(),
AddNoise(), and Overlay().

Assignment 3

o Compile the program with multiple modules using
static shared library

Advanced.hj

.

Constants.hJ

FilelO.h J

DIPs.h J

AdV&ﬂCEd-CJ FilelO.c J DIPs.c J PhotoLab.cJ
5
Advanced.o FilelO.o PhotoLab o libfilter.a
e —_—
T =
libfilter.a Jopligler

PhotolLab J
libfilelO.a Test

Compilation

o Compile the program with multiple modules using static shared
library
l. Generate the object files for each module, e.g.
% gcc -c FilelO.c -o FilelO.o -ansi -Wall
% gcc -c DIPs.c -o DIPs.o -ansi -Wall
% gcc -¢ Advanced.c -o Advanced.o -ansi -Wall
% gcc -c Photolab.c -o PhotolLab.o -ansi -Wall
. Create libraries
% ar rc libfilelO.a FilelO.o
% ranlib libfilelO.a
% ar rc libfilter.a DIPs.o Advanced.o
% ranlib libfilter.a
lll. Linking with the library
% gcc Photolab.o -IfilelO -Ifilter -L. -o Photolab
IV. Execute the program

% ./PhotolLab

Makefile

 Refer to lecture 8

DIP operation

Advanced DIP operation

— I I void Posterize(unsigned char R[WIDTH][HEIGHT],
Posterize the iImage
) . unsigned char GI\WIDTH][HEIGHT],
— Add Noise to an image unsigned char B]WIDTH][HEIGHT],
— |mage Over|ay unsigned int rbits,
_ unsigned int gbits,
— Bonus: unsigned int bbits);

» Surprise DIP Function
void AddNoise(int n,
unsigned char R[WIDTH][HEIGHT],
unsigned char GI\WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT));

void Overlay(char fname[SLEN],
unsigned char R[WIDTH][HEIGHT],
unsigned char GI\WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT],

unsigned int x_offset, unsigned int
y_off);

Posterize the image

For instance pixel (0,0) :

R[0][0] =41 =00101001,
G[0][0] = 84 = 01010100,
B[O][0] = 163 =10100011,
J rbits, gbits, and bbits specify the number of least significant bits that need to
be posterized. Since the size of unsigned char variable is 8 bits, the valid range
of rbits, gbits, and bbits will be 1 to 8.

8th 7th 6th 5th 4th 3rd 2nd 1st 8th 7th 6th 5th 4ih 3rd 2nd 1st
0(0|1|0|1|0(|0]|1 0o(0|0)1|1|1(1|1

(a) Posterize the least 6 significant bits of the red channel for pixel(0,0)

8th 7th 6th 5th 4th 3rd 2nd 1st 8th 7th 6th 5th 4th 3rd 2nd 1st
o/1/0|1|0f1(0]|0O 0O(1(0|0|1|1 1|1

(b) Posterize the least 5 significant bits of the green channel for pixel(0.0)

8th 7th 6th 5th 4th 3rd 2nd 1st 8th 7th 6th 5th 4th 3rd 2nd 1st
i1/0|1(0|0|0|1|1 i/0(1]0|0(1 1 |1

(c) Posterize the least 4 significant bits of the blue channel for pixel(0,0)

Figure 1: The example of posterizing the color channels.

o HINT: You will need to use bitwise operators, e.g. ‘&’, ‘<<’, ‘>>’, ‘|’

Add Noise

number of noise added to the image:

n* WIDTH x HEIGHT
100

n : Noise percentage

1. Include the stdlib.h and time.h header files at the beginning of your program:
#include <stdlib.h>
#include <time.h>
2. Include the following lines at the beginning of your main function:
/* initialize the random number generator with the current time */
srand(time(NULL));
3. To simulate drawing a card from the shuffled deck, use the following statement:
[* generate a random pixel */
x =rand() % WIDTH; // You need to define the variable x.
y =rand() % HEIGHT; // You need to define the variable x.
The integer variables x and y then will have a random values in the range from WIDTH and
HEIGHT accordingly.

Overlay

qdr

(a) Snowboard image (b) Halloweenl image (c) Halloweenll image

(d) Overlay the SnowBoard image at position (0.0). and the Hal-
loween image at position (50,30)

(e) Overlay the third image at position (70.65)

10

Overlay

Each pixel in selected image for overlay operation:

- white: RGB value is greater than 250, (r >250, g > 250, b > 250), this pixel should not be put onto the
UCI_Peter.

- non white: overwrite to UCI_Peter.

11

Support for the DEBUG mode

— Refer to Lecture 9

Extend the Makefile
— Refer to Lecture 8

12

	EECS 22: Assignment 3�Digital Image Processing
	Outline
	Decompose a program into multiple modules
	Assignment 3
	Compilation
	Makefile
	DIP operation
	Posterize the image
	Add Noise
	Overlay
	Overlay
	Slide Number 12

