
EECS 22: Assignment 4
Digital Image Processing

Due on Monday 11/18/2013
11:00pm

Outline

• Change program to accommodate varying
input file size

– struct and malloc + free

• Add 3 new Advanced DIP operations

– Resize, rotate, Julia set

• Extend the Test all functions

• Extend the Makefile

• Use “Valgrind” tool to find memory leaks

Varying image size

• New image.h header file

Varying image size

• R G B fixed size arrays replaced by IMAGE data
structure

• Passing around pointers to an IMAGE variable
– IMAGE *image;

• IMPORTANT: Define CreateImage function first
because it is used in FileIO.c to allocate the
memory for the image.
– Your program will probably not compile or run

properly (if compiled successfully) if this function is
not defined correctly.

struct

• New data type defined by a struct

• A data type that can encapsulate other data
types, including itself

• As if you’re creating a new ‘data type’

struct

• Can declare variables using the ‘new data type’
– IMAGE x;

• creates a new variable x of type IMAGE
• Can access the variables inside struct x by the following

– x.Height, x.Width, x.R, x.G, x.B

– IMAGE *x;
• Can access the variables inside struct x by the following

– (*x).Height, (*x).Width, (*x).R, (*x).G, (*x).B
» Must do indirection first

– x->Height, x->Width, x->R, x->g, x->B
» ‘->’ is equivalent to ‘(*x).’

• More details in Lecture 11

malloc

• Malloc (memory allocation)

– Telling the program to reserve an amount of
memory for variable use

– Typically involves pointers

– Dynamically allocated (unlike static fixed size [e.g.
array])

– Should be free()’d after it’s use

• More details in Lecture 12

malloc

• malloc allocates a piece of memory the size of 1
unsigned char

• Use a pointer variable to point to that allocated piece
of memory by the second line

• Can do any amount of operations on the pointer
variable

• free()’s the pointer variable and the piece of memory it
is pointing to when it is done using it.

Function Prototypes

• Changed return types in DIPS.h and Advanced.h
– Used to void return type, now IMAGE * (pointer to an IMAGE variable)

– DIPS.h shown below. Something similar in Advanced.h

Overlay

• Turn in 2 images

– 1st image is overlay halloweenBat image at
position 100, 150

– 2nd image is overlay turkey image at position 165,
325

Resize

• Resizing the image based on an user entered
percentage between 0 and 500

• More specifically, scale

Resize

• Pixels should be calculated according to

– Note: x and y are coordinates of new image

– x1, y1, x2, y2, are coordinates of original image

Resize

Rotate

• Rotate 90 degrees

– Invert width and height

– Assign appropriate pixel to new coordinate

• Top left (0, 0) pixel should be new image’s top right
(Width-1, Height-1) pixel

Julia Set

• A set of operations that reveals more and more detail
through progressive and recursive computation

• Adapting source code from online to fit our DIP program,
specifically http://lodev.org/cgtutor/juliamandelbrot.html

• Note that the Julia Set does not operate on a specific file.
Rather, it just does computations on an image file size and
produces a fine-detailed image

• No input file is needed for the Julia Set
– Note that we did not have to read in UCI_Peter before calling

the Julia Set operation

• The following page contains the algorithm’s source code
adapted from the link listed above

http://lodev.org/cgtutor/juliamandelbrot.html

Julia Set

• The source code uses 256 colors to draw the Julia
set image. The more colors used to draw the
image, the more detailed the image becomes.
However, this also increases complexity.

• Therefore, we will restrict the amount of colors
we can draw to only 16. This allows us to simplify
the code and produce decently complex pictures.

• Suggested to follow the setup on the following
slide for implementing this function. Insert your
code between the sections marked off as /*
MODIFICATIONS NEEDED */

Julia Set

Test all functions

• Extend to incorporate new DIP functions

• Note the return type and argument type
changes!!

Extend the Makefile

• Be sure to incorporate the new image.c,
fileIO.h, and fileIO.c files

• Generate 2 executables

– Photolab: Interactive menu without DEBUG
statements

– PhotoLabTest: Automatically tests all functions
with DEBUG statements

Valgrind

• Use this tool to find improper memory usages

– Not free()-ing memory after malloc()-ing and using
them

– Trying to use a location beyond the space the user
has malloc()-ed

• Compile your code and run the following
command

– valgrind --leak-check=full PhotoLabTest

Important Point

• Almost all functions are passing pointers to
IMAGE variables and not the IMAGE struct
itself

• Passing pointers ensures that values will
change

• Know the difference in how to access
variables, how to modify variables, etc.

• You should clearly know the difference and
why this matters!

