EECS 22: Assignment 4
Digital Image Processing

Due on Monday 11/18/2013
11:00pm



Outline

Change program to accommodate varying
input file size

— struct and malloc + free

Add 3 new Advanced DIP operations

— Resize, rotate, Julia set

Extend the Test all functions

Extend the Makefile

Use “Valgrind” tool to find memory leaks



Varying image size

e New image.h header file

typedef struct {

unsigned int Width; /* image width */
unsigned int Height:; /* image height */
unsigned char *R; /* pointer to the memory storing all the R intensity values */
unsigned char *G; /* pointer to the memory storing all the G intensity values */
unsigned char *B; /* pointer to the memory storing all the B intensity values */

}IMAGE;

/* Get the color intensity of the Red channel of pixel (X, y) in image */
unsigned char GetPixelR (IMAGE *image, unsigned int x, unsigned int y):

/* Get the color intensity of the Green channel of pixel (X, y) in image */
unsigned char GetPixelG(IMAGE *image, unsigned int x, unsigned int y):

/* Get the color intensity of the Blue channel of pixel (x, y) in image */
unsigned char GetPixelB (IMAGE *image, unsigned int x, unsigned int y):

/* Set the color intensity of the Red channel of pixel (X, y) in image with value r */
void SetPixelR(IMAGE *image, unsigned int x, unsigned int y, unsigned char r):;

/* Set the color intensity of the Green channel of pixel (X, y) in image with value g */
void SetPixelG(IMAGE *image, unsigned int x, unsigned int y, unsigned char g):

/* Set the color intensity of the Blue channel of pixel (X, ¥) in image with value b */
void SetPixelB (IMAGE *image, unsigned int x, unsigned int y, unsigned char b):

/* allocate the memory space for the image structure */
/* and the memory spaces for the color intensity values. */
/* return the pointer to the image, or NULL in case of error */
IMAGE *CreateImage (unsigned int Width, unsigned int Height);

/* release the memory spaces for the pixel color intensity values */
/* deallocate all the memory spaces for the image * ]
void DeleteImage (IMAGE *image):;



Varying image size

* R G B fixed size arrays replaced by IMAGE data
structure

e Passing around pointers to an IMAGE variable
— IMAGE *image;

* IMPORTANT: Define Createlmage function first

because it is used in FilelO.c to allocate the
memory for the image.
— Your program will probably not compile or run

properly (if compiled successfully) if this function is
not defined correctly.



struct

 New data type defined by a struct

typedef struct {

unsigned int Width: f* image width */
unsigned int Height: f*# image height */
unsigned char *R; f* pointer to the memory sStoring all the R intensity values #*/
unsigned char *G; f* pointer to the memory sStoring all the G intensity values #*/
unsigned char *B; /* pointer to the memory storing all the B intensity values */

} IMAGE ;|
* A data type that can encapsulate other data
types, including itself

* Asif you're creating a new ‘data type’



struct

Can declare variables using the ‘new data type’
— IMAGE x;

e creates a new variable x of type IMAGE

e Can access the variables inside struct x by the following
— X.Height, x.Width, x.R, x.G, x.B

— IMAGE *x;
e Can access the variables inside struct x by the following
— (*x).Height, (*x).Width, (*x).R, (*x).G, (*x).B
» Must do indirection first
— x->Height, x->Width, x->R, x->g, x->B
» ‘->" is equivalent to ‘(*x).

More details in Lecture 11



malloc

 Malloc (memory allocation)

— Telling the program to reserve an amount of
memory for variable use

— Typically involves pointers

— Dynamically allocated (unlike static fixed size [e.g.
array])

— Should be free()’'d after it’s use
* More details in Lecture 12



malloc

ansigned char *x = NULL;
X = malloc(sizeof (unsigned char)):;
free(x):

malloc allocates a piece of memory the size of 1
unsigned char

Use a pointer variable to point to that allocated piece
of memory by the second line

Can do any amount of operations on the pointer
variable

free()’s the pointer variable and the piece of memory it
is pointing to when it is done using it.



Function Prototypes

Changed return types in DIPS.h and Advanced.h

— Used to void return type, now IMAGE * (pointer to an IMAGE variable)
— DIPS.h shown below. Something similar in Advanced.h

/* change color image to black & white */
IMAGE *BlackNWhite (IMAGE *image);

/* flip image vertically */
IMAGE *VF1lip (IMAGE *image);

/* mirror image horizontally */
IMAGE *HMirror (IMAGE *image):;

/* color filter */

IMAGE *ColorFilter (IMAGE *image,
int target_r, int target_g, int target_b, int threshold,
double factor_ r, double factor_g, double factor_b) :

/* sharpen the image */
IMAGE *Sharpen (IMAGE *image);

/* edge detection */
IMAGE *Edge (IMAGE *image):;

/* add border */

IMAGE *AddBorder (IMAGE *image,
int border r, int border g, int border b,
int border_width)ﬂ



Overlay

* Turnin 2 images

— 1st image is overlay halloweenBat image at
position 100, 150

— 2"d image is overlay turkey image at position 165,
325




Resize

* Resizing the image based on an user entered
percentage between 0 and 500
* More specifically, scale

Widthy,e., = Width,14 * (percentage / 100.00):

Heighty.,, = Height,1z * (percentage / 100.00);



Resize

Pixels should be calculated according to

{x1,y1}

Figure 3: Pixels mapping from the bigger original image to the smaller new image

x1l = x / (percentage / 100.00);
yl =y / (percentage / 100.00);
X2 = (x + 1) / (percentage / 100.00);
y2 = (y + 1) / (percentage / 100.00);

— Note: x and y are coordinates of new image
— x1, v1, x2, y2, are coordinates of original image



Resize

(a) Original image (b) resized to a bigger image (percent- (c) resized to a smaller im-
age = 175) age (percentage = 60)



Rotate

* Rotate 90 degrees
— Invert width and height

— Assign appropriate pixel to new coordinate

» Top left (0, 0) pixel should be new image’s top right
(Width-1, Height-1) pixel




Julia Set

A set of operations that reveals more and more detail
through progressive and recursive computation

Adapting source code from online to fit our DIP program,
specifically http://lodev.org/cgtutor/juliamandelbrot.html

Note that the Julia Set does not operate on a specific file.
Rather, it just does computations on an image file size and
produces a fine-detailed image

No input file is needed for the Julia Set

— Note that we did not have to read in UCI_Peter before calling
the Julia Set operation

The following page contains the algorithm’s source code
adapted from the link listed above



http://lodev.org/cgtutor/juliamandelbrot.html

int main(int argc, char *argv[])
{

screen(400, 300, 0, “"Julia Set"):; //make larger to see more detail!

f/each iteration, it calculates: new = old*ocld + c, where c is a constant and cld starts at current pixel
ouble cRe;, cIm; [//real and imaginary part cf the constant c, determinate shape of the Julia Set
double newRe, newlm, cldRe, o©ldIm; //real and imaginary parts of new and cld
double zoom = 1, moveX = 0, moveY = 0; //you can change these tc zccm and change position
ColorRGB color; //the RGB color value for the pixel
int maxIterations = 300; //after how much iteraticns the function should stcp

/fpick some values for the constant c, this determines the shape of the Julia Set
cRe = -0.7;
cIm = 0.27015;

f/locp through every pixel
for(int x = 0; X < wW; X++)
for(int y = 0; y < h; y++)
{
//calculate the initial real and imaginary part of z, based on the pixel lccation and zoom and pcsition values
newRe = 1.5 * (x - w / 2) / (0.5 * zoom * w) + moveX;
newlm = (y - h / 2) / (0.5 * zoom * h) + moveY;
[//1i will represent the number of iterations
int i;
//start the iteration process
for(i = 0; 1 < maxIterations; i++)
{
//remember wvalue of previous iteration
oldRe = newRe;
¢ldIm = newlm;
//the actual iteration, the real and imaginary part are calculated
newRe = oldRe * oldRe - oldIm * o0ldIm + cRe;
newIm = 2 * oldRe * 0ldIm + cIm;
/fif the point is cutside the circle with radius 2: stcp
if((newRe * newRe + newlm * newlm) > 4) break;
}
f/use color mcdel conversion to get rainbow palette, make brightness black if maxIterations reached
color = HSVtoRGB(ColorHSV(i $ 256, 255, 255 * (i < maxIterations))):;
//draw the pixel
pset({x, y, color):
}
//make the Julia Set wvisible and wait to exit
redraw():
sleep():
return 0;



Julia Set

* The source code uses 256 colors to d
set image. The more colors used to ©

raw the Julia
raw the

image, the more detailed the image

pecomes.

However, this also increases complexity.

* Therefore, we will restrict the amount of colors
we can draw to only 16. This allows us to simplify
the code and produce decently complex pictures.

* Suggested to follow the setup on the following

slide for implementing this function.

Insert your

code between the sections marked off as /*

MODIFICATIONS NEEDED */



~ Julia Set

IMAGE *Juliaset (unsigned int W, unsigned int H, unsigned int max _iteration)
{

/* wariables you need to declare */

/* MODIFICATIONS NEEDED #*/

/* MODIFICATIONS NEEDED #*/

const unsigned char palette[MAX COLOR][3] = {
 faeiiet g b¥*/

{ 0, 0 G = /* 0, black 74
£:32%; 0, 0}, /* 1, brown 74
{358, 0, 0}, /* 2, red */
{255, 127, 0}, /* 3, orange wf
{255, 255; | 5 2 /* 4, yellow */
£ 327; 255, 0}, /* 5, light green *f
{ 0, 255, 0}, /* 6, green ®f
{ 0, 255, 127 }, /* 7, blue green */
{ 0, 255, 255 )}, /* 8, turquoise */
§ 127, 255, 255}, /* 9, light blue =/
{858, 255 B ) /* 10, white */
{ 255, 127, 255 }, /* 11, pink */
§{ 255, 0, 255}, /* 12, light pink */
£ 127, 0, 255}, /* 13, purple 74
£ o, 0, 255 3}, /* 14, blue */
{ o, 0, 127 } /* 15, dark blue ®/
}:
IMAGE *image;
image = CreateImage (W, H):
/* The following is taken (with very few adaptations) from: */
/* http://lodev.ora/catutor/juliamandelbrot.html wf
cRe = -0.7;
cIm = 0.27015;

/* Main core of algorithm */
/* MODIFICATIONS NEEDED */

/* MODIFICATIONS NEEDED *A

return image;



Test all functions

* Extend to incorporate new DIP functions

* Note the return type and argument type
changes!!



Extend the Makefile

* Be sure to incorporate the new image.c,
filelO.h, and filelO.c files

e Generate 2 executables

— Photolab: Interactive menu without DEBUG
statements

— PhotolabTest: Automatically tests all functions
with DEBUG statements



Valgrind

e Use this tool to find improper memory usages

— Not free()-ing memory after malloc()-ing and using
them

— Trying to use a location beyond the space the user
has malloc()-ed

 Compile your code and run the following
command

— valgrind --leak-check=full PhotolLabTest



Important Point

Almost all functions are passing pointers to
IMAGE variables and not the IMAGE struct

itself

Passing pointers ensures that values will
change

Know the difference in how to access
variables, how to modify variables, etc.

You should clearly know the difference and
why this matters!



