'tLJ technische universitat
dortmund

Embedded & Real-time
Operating Systems

Peter Marwedel
TU Dortmund, Informatik 12
Germany

fakultat fur informatik
informatik 12

(2010& 11 H 24 B) These slides use Microsoft clip arts.

Microsoft copyright restrictions apply.

Subset of slides selected for EECS 222C.

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Reuse of standard software components

Knowledge from previous designs to be
made available in the form of intellectual
property (IP, for SW & HW).

Operating systems
Middleware

technische universitat = fakultat fur © p. marwedel,
dortmund informatik informatik 12, 2010

Embedded operating systems
- Characteristics: Configurability -

Configurability
No single OS will fit all needs, no overhead for
unused functions tolerated = configurability needed.

-

= Simplest form: remove unused functions (by linker ?)._;“l
= Conditional compilation (using #if and #ifdef commands).

= Dynamic data might be replaced by static data.

= Advanced compile-time evaluation useful.

= Object-orientation could lead to a derivation subclasses.

technische universitat = fakultat fur © p. marwedel,

dortmund informatik informatik 12, 2010 - 3-
aim] o] %]

N

hctveBudd [oeen 3] %

=4

= (& Reall piConfin Vitwaorks 3] S

& gl Cos componenks 3

& @ spphcalion components =]

= @ development taol camponents)

-y o

= limen EI

8 vew .

e anent component [T e pe— WABNING,Ihs ook cctorsets g

o kemel object shom ioutine arcd vl o be REWOVED. g

« gl loader components Cos syrbel demarrde °

% pf CTTIETIEEEE symbol tnbie tauget debugang 3

% ol target shell [k)

EyS Sondnarn et ben 2

& @ network components g

& g chuokele components S

= gl operaling spstem components ey e, e <]

+ o ANSIC tibel | e chenon g ; s

g i i dws bws ltod | e |cws lbm tow | £

89577 40 -UB6 9. ||| W52 M8 ZETI6 AUGGTE g
SRR | | 5.
I 5
£Y
BN
o
fs
Automatic dependency analysis and size calculations allow users to quickly custom- ZE
tailor the VXWORKS operating system. E8

technische universitét = fakultét fir © p. marwedel, . .

o © Windriver - 4-

dortmund informatik informatik 12, 2010

Verification of derived OS?

Verification a potential problem of systems
with a large number of derived OSs:

Each derived OS must be tested thoroughly;

Potential problem for eCos
(open source RTOS from Red Hat),
including 100 to 200 configuration points

[Takada, 01].

technische universitét = fakultat fir
== dortmund informatik informatik 12, 2010

© p. marwedel,
p - 5-

Embedded operating systems
- Disc and network handled by tasks -

Effectively no device that needs to be

supported by all variants of the OS,

except maybe the system timer.

Many ES without disc, a keyboard, a screen or a mouse.

Disc & network handled by tasks instead of integrated
drivers. Discs & networks can be handled by tasks.

Embedded OS Standard OS
application software application software
middleware | middleware middleware |middleware
device driver | device driver || operating system

device driver |device driver

kernel

technische universitat = fakultat fur © p. marwedel,
dortmund informatik informatik 12, 2010

Example: WindRiver Platform Industrial Automation

WIND RIVER PLATFORM /A

TOOLS

SNIFF + PRO IDE

M Core Runtime

M Multimedia

M Foundation Connectivity
] Industrial Ethernet & Fieldbusg
] Enterprise Connectivity

"] Hardware & Bring-up Tools

RUNTIME

| Reference Hardware and Bring-up Tools |

BERVICES

* Dptianatl

technische universitat = fakultat fur © p. marwedel, . .
dortmund informatik informatik 12, 2010 © Windriver - 7-

Embedded operating systems
- Protection is optional-

Protection mechanisms not always necessary:
ES typically designed for a single purpose,
untested programs rarely loaded, SW considered reliable.

Privileged I/O instructions not necessary and |
tasks can do their own 1/O. %

Example: Let switch be the address of some switch
Simply use

e
load register,switch ’E OFE,
instead of OS call.

However, protection mechanisms may be needed for safety
and security reasons.

technische universitat = fakultat fur © p. marwedel, 8
dortmund informatik informatik 12, 2010 - o

Embedded operating systems
- Interrupts not restricted to OS -

Interrupts can be employed by any process
For standard OS: serious source of unreliability.
Since

embedded programs can be considered to be tested,
since protection is not necessary and
since efficient control over a variety of devices is required,

it is possible to let interrupts directly start or stop tasks
(by storing the task’s start address in the interrupt table).
More efficient than going through OS services.

Reduced composability: if a task is connected to an

interrupt, it may be difficult to add another task which also
needs to be started by an event.

technische universitat = fakultat fur © p. marwedel, 9
dortmund informatik informatik 12, 2010 I

Embedded operating systems
- Real-time capability-

Many embedded systems are real-time (RT) systems and,
hence, the OS used in these systems must be real-time
operating systems (RTOSs).

\ls

@«.gl

technische universitat * fakultat fur © p. marwedel, 10
dortmund informatik informatik 12, 2010 - -

Real-time operating systems
- Definition and requirement 1: predictability -

Def.: (A) real-time operating system is an operating system
that supports the construction of real-time systems.

The following are the three key requirements

1. The timing behavior of the OS must be predictable.

Vv services of the OS: Upper bound on the execution time!
RTOSs must be timing-predictable:

short times during which interrupts are disabled,
(for hard disks:) contiguous files to avoid
unpredictable head movements.

[Takada, 2001]

technische universitat = fakultat fur © p. marwedel, 1
dortmund informatik informatik 12, 2010 - -

Real-time operating systems
Requirement 2: Managing timing

2. OS should manage the timing and scheduling

OS possibly has to be aware of task deadlines;
(unless scheduling is done off-line).

Frequently, the OS should provide precise time services
with high resolution.

[Takada, 2001]

technische universitat * fakultat fur © p. marwedel, 12
dortmund informatik informatik 12, 2010 - -

Real-time operating systems
Requirement 3: Speed

3. The OS must be fast
Practically important. o

[Takada, 2001]

technische universitat = fakultat fur © p. marwedel,

' dortmund informatik informatik 12, 2010 - 13-

RTOS-Kernels

Distinction between
real-time kernels and modified kernels of standard OSes.

application software application software

middleware | middleware middleware |middleware |

device driverldevice driver operating system

real-time kernel device driver ‘ device driver |

Distinction between
general RTOSs and RTOSs for specific domains,
standard APIs (e.g. POSIX RT-Extension of Unix,
ITRON, OSEK) or proprietary APIs.

technische universitat * fakultat fur © p. marwedel,

' dortmund informatik informatik 12, 2010 - 14-

Functionality of RTOS-Kernels

Includes
processor management,
memory management, resource management
and timer management;
task management (resume, wait etc),
inter-task communication and synchronization.

technische universitat = fakultat fur © p. marwedel, 15
dortmund informatik informatik 12, 2010 - -

Classes of RTOSes according to R. Gupta:
1. Fast proprietary kernels

For complex systems, these kernels are inadequate,
because they are designed to be fast, rather than to be

predictable in every respect
[R. Gupta, UCI/UCSD]

Examples include
QNX, PDOS, VCOS, VTRX32, VXWORKS.

technische universitat * fakultat fur © p. marwedel, 16
dortmund informatik informatik 12, 2010 - -

Classes of RTOSs according to R. Gupta:
2. RT extensions to std. OSs

Attempt to exploit comfortable main stream OS.
RT-kernel running all RT-tasks.
Standard-OS executed as one task.

non-RT task 1| non-RT task 2

RT-task 1| RT—task 2

device driver |device driver Standard-0OS

real-time kernel

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;
less comfortable than expected

technische universitat = fakultat fur © p. marwedel,

' dortmund informatik informatik 12, 2010 - 17-

Example:
RT-Linux

RT-task
cannaz)st usse standard OS calls.

Commercially available from
fsmlabs (www.fsmlabs.com)

scheduler

Linux-Kernel @
driver I

interrupts
: RT-Scheduler
ERT'L'nUX ‘ ‘ ’ interrupts
I/0
_________________ interrupts
Hardware
technische universitat * fakultat fur © p. marwedel,

L LU dortmund informatik informatik 12, 2010 - 18-

Example:
Posix 1.b RT-extensions to Linux

Standard scheduler can be replaced by POSIX
scheduler implementing priorities for RT tasks

\ \ I / / Special RT-calls and
| POSIX 1.b scheduler | standard OS calls
Linux-Kernel available. .
_ Easy programming,
el no guarantee for
/0, interrupts meeting deadline
Hardware

technische universitat = fakultat fur © p. marwedel,
%= dortmund informatik informatik 12, 2010

- 19 -

Evaluation (Gupta)

According to Gupta, trying to use a version of a standard
OS:

not the correct approach because too many basic and
inappropriate underlying assumptions still exist such as
optimizing for the average case (rather than the worst case),
... ignoring most if not all semantic information, and
independent CPU scheduling and resource allocation.
Dependences between tasks not frequent for most
applications of std. OSs & therefore frequently ignored.
Situation different for ES since dependences between tasks
are quite common.

technische universitét = fakultét fir © p. marwedel, 20

‘" dortmund informatik informatik 12, 2010

10

Classes of RTOSs (R. Gupta):
3. Research trying to avoid limitations

Research systems trying to avoid limitations.
Include MARS, Spring, MARUTI, Arts, Hartos, DARK, and
Melody

Research issues [Takada, 2001]:
low overhead memory protection,
temporal protection of computing resources
RTOSes for on-chip multiprocessors
support for continuous media

guality of service (QoS) control.

technische universitat = fakultat fur © p. marwedel, 21

dortmund informatik informatik 12, 2010

11

