EECS222C: SoC Software Synthesis

EECS 222C:

Lecture 10

Rainer Domer

doemer@uci.edu

System-on-Chip Software Synthesis

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Course Administration
— Course evaluation

— Final exam

Final Technical Report
— Contents and Ouitline

Project Review

— Discussion

Embedded Operating Systems
— RTOS requirements, examples
Embedded Software Synthesis
— Course Summary

EECS222C: SoC Software Synthesis, Lecture 10

Lecture 10: Overview

— SoC Software Synthesis for a MP3 Audio Decoder

(c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis

Course Administration

» Final Course Evaluation
— 9t through 10t week
— May 28, 2013 through June 9, 2013, 11:45pm
— Closes Sunday night!
— Online via EEE Evaluation application
» Evaluation of Course and Instructor
— Voluntary
— Anonymous
— Very valuable
* Help to improve this class!
— Please spend 5 minutes!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 3

Course Administration

* Final Exam
— Date and time
» Wednesday, June 12, 2013, until 12pm (noon)
— Format

* Delivery of Final Technical Report

* Electronic submission (turnin on server)
—Ffinal/ISS_sir
— Final/Report.pdf

»Hard deadline!
* Wednesday, June 12, 2013, 12pm (noon)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 4

(c) 2013 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis Lecture 10

Final Technical Report

Title

— SoC Software Synthesis for a MP3 Audio Decoder
» Final Technical Report for EECS 222C, Spring 2013

Author

— Your Name and ID
Contents

— Describe the overall SoC design approach

— Outline the major steps in the design flow

— Use the MP3 decoder as case study

« Tell the story of the project assignments!

— Conclude with a summary of the lessons learned
Length

— About 12 pages (including title page and references)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 5

Final Technical Report

» Suggested Outline
1. Title page with abstract
2. Introduction
1. Top-down embedded software design flow
3. Case study on a MP3 decoder
Application reference code
System specification model
Validation and profiling
Target architecture selection
Transaction Level Model (TLM)
C code generation and cross-compilation
Pin-Accurate Model (PAM)
8. Instruction Set Simulation (ISS) Model
4. Conclusion
1. Lessons learned
5. References

NooRwDb=

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 6

(c) 2013 R. Doemer 3

EECS222C: SoC Software Synthesis

Project Review: Embedded Systems

+ System embedded into another system
— Constraints from external input (often real-time)
— Application specific (not general purpose)
* Omnipresent in our environment
— In many application domains
— In 2005 [Source Netrino]
» Only 2% of all processors in workstations
* Remaining 8.8 billion in embedded systems
— Pervasive

Source: P. Chou, UCI

Source: Edumicator

\ w\

\

Source: Miele Source: Philips Source: www.trouper.com Source: www.medicacorp.com/

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 7

Project Review: Motivation

* Design challenges
— Often mobile
» Battery powered (low power)
Often highly reliable
+ Extreme environment (e.g. temperature)
High performance constraints
+ Often real-time requirements
High complexity
* E.g. Mercedes Benz E-class
— 55 electronic control units
— 5 communication busses
Tightly coupled
» Software
» Hardware
Rapid development
for low price...

Source:
MotorolaInc

Source: Daimler

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 8

(c) 2013 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis

Project Review: Embedded System Design

* Design Advantages [
— Application known at design time =
— Environment known at design time
— Allows for customized / optimized solution
* Improved performance
* More functionality
» At lower power
» Custom Platform, SW and HW components
— Multi-Processor System-on-Chip (MPSoC),

» Complete embedded system integrated on a chip
General-purpose and application-specific processors
Application Specific Integrated Circuit (ASIC)

Field Programmable Gate Array (FPGA)
Circuit board with off-the-shelf-components

Source: simh.trailing-edge.com

Source: Xilinx

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 9

Project Review: Design Complexity Challenge

* Productivity Gap
Hardware design gap
+ Software design gap
= System design gap

Additional SW
required for HW
2x/10 months

Capability of
Technology
2x/18 months

A
log

HW Design
Productivity
1.6x/18 months

System
Design Gap

HW Design
Average HW +
SW Productivity

Software
Productivity
2x/5 years

>

time

1981
1985
1989
1993
1997
2001
2005
2009

(source: “Hardware-dependent Software”, Ecker et al., 2009)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 10

(c) 2013 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis Lecture 10

Project Review: HW/SW Codesign

+ Traditionally, software development follows hardware

* New: Unified, concurrent Design of
— Hardware and
— Software

» Improving Time to Market
— Faster delivery of new products
— Higher probability of on time delivery

» Using a single specification model (System Model)
— New specification model
— New specification language
» Tight integration of
» software development
* hardware development

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 1

Project Review: SoC Co-Design Flow

* Application Case Study on a MP3 Audio Decoder:
— Given: Reference source code (mad_C.tar.gz)

— Analyzed: System Model (mad_SpecC.tar.gz)
— Refined: Platform Model with integrated ISS
— Next: System design cycle(s) to meet timing
— Finally: Hand-off to manufacturing...
Specification HW/SW Manufacturing
~— ~ ~Todesign ™~ T
C/C++ System AnChi
Code Platform Model System-on-Chip
EOEIE]
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 12

(c) 2013 R. Doemer 6

EECS222C: SoC Software Synthesis

Project Review: SCE Design Flow

Simulation model

! |_,| Validation
H Analysis

Compilation Simulation model
Architecture model
!
m on
I Communication refinement Proto

'
I
'
'
'
I Validation
) | _'l Analysis
' a
I
'
'
I

Simulation model

H
Communication model :
1 _.l Validation
! ¢

Analysis
imatio

]
! it
'
i Hardware | Interface | Software b
p R’I"I_:‘L synthesis | synthesis [compilation RTSS P
i i
'

I

|

H
i Compilation Simulation model
Implementation model T
. H
v

Validation

i
I
|
|
I
I
|
i
I
|
|
I
I
|
i
i v
|
I
I
|
i
I
|
|
I
I
|
i
I
|
i Analysis

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 13

Project Review: Application Case Study

* Project Application: MP3 Audio Decoder

— Digital compression of audio data reduces
» Communication bandwidth and
+ Storage requirements

— MPEG 1 Layer 3 (aka. MP3) compression algorithm
* most commonly used
* uses a variety of clever tricks to compress digital music
— by 90% or more!
 performs lossy compression
* applies perceptual science of psycho acoustic models
— exact input signal does not need to be retained
— human ear can only distinguish a certain amount of detail

— sufficient if output signal sounds identical to the human ears
[Source: CECS-TR-05-04.pdf]

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 14

(c) 2013 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis

Project Review: Application Case Study

* Project Application: MP3 Audio Decoder

— MP3 audio bit stream
+ organized in frames of bits
+ each frame contains 1152 encoded PCM samples
» frame length depends on the bit rate (quality)
« bit rate may vary in variable rate encoded streams
« frame header contains information for the frame detection

— MPEG 1 Layer 3 frame format

| Header | Error Check ‘ Audio Data I Ancillary Data |
| Side Info ’ Main Data ‘
[Source:
\ Scale factors I Huffman code bi!s| CECS-TR-05-04.pdf]
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 15

Project Review: Application Case Study

* Project Application: MP3 Audio Decoder
— MP3 decoder block diagram

Magnitude &
S
Huftman coce o oct
oits Hutfman Requanmat.onH Reordering |
Decoding
Bitstream ?::;: Huffman m = DecT
itsreal Error Information uffman Info
checking Decodi
Scalefactor
Decoding Scalefactor
Decodii
Synthesis Right
Polyphase [
A IMDCT Frequency FillrBank
Joint Reduction Inversion
Stereo PCM
Becodng Alias £ Synthesis
IMDCT requency Left
Reduction Inversion Polyphase =
FiltorBank
[Source:
CECS-TR-05-04.pdf]
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 16

(c) 2013 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis

Project Review: Reference Code

 Project Application: MP3 Audio Decoder

— MP3 decoder C reference code
» Underbit Technologies Inc.

* MAD: MPEG Audio Decoder
= http://www.underbit.com/products/mad

decodeMP3

1ll_dequant

Partial function hierarchy in MP3 reference code
[Source: P. Chandraiah]
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 17

Project Review: Assignment 1

* Administration
— Linux Servers
— gamma.eecs.uci.edu (NSF client)
— omicron.eecs.uci.edu (NSF client)
* Intel Pentium based workstations
* RedHat Linux (Fedora Core 12)
» Access via secure shell protocol (ssh)
— Accounts
» User ID same as your UCI net ID
» Password as discussed in class
— SpecC Software (© by CECS, UCI)
» SpecC Compiler and Simulator
» System-on-Chip Environment (SCE)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 18

(c) 2013 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis Lecture 10

Project Review: Assignment 1

* Login on Server via SSH
— Account infos will be emailed

* Install MP3 Decoder example
—cd ~
— mkdir hwl
— cd hwl
— gtar xvzf /home/eecs222/EECS222C S13/mad_C.tar.gz
— cd mad_C
— make clean
— make
— make test

» Become familiar with the application and its structure

— Browse and read the source files
— Draw a block diagram of the major functions

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 19

Project Review: Assignment 1

* Analyze the given MP3 Decoder application

» Questions to study:
— Example MP3 streams
* Do they play?
* Lengthin seconds?
* Number of samples?
Application source code
* How many source files?
* How many lines of code?
* How many functions?
What are the major functions?
» How do they relate?
» Function call graph?
What are the most critical functions?
* Where is the most time spent?
What type of operations are performed?
* Floating point?
» Others?
— Where is any potential for parallel execution?
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 20

(c) 2013 R. Doemer 10

EECS222C: SoC Software Synthesis

» Key Concepts in System Modeling

Project Review: System Model Concepts

+ System Level Modeling

— Abstract description of a complete system
— Software + Hardware

o System Model
— Explicit Structure

» Block diagram structure ("
» Connectivity through ports

» Potential for parallel execution
» Potential for pipelined execution

:
»
— Explicit Hierarchy —O-
» System composed of components = _ﬁ: = = :_‘I_\D -
— Explicit Concurrency X 1
I

— Explicit Communication and Computation
* Channels and Interfaces
* Behaviors / Modules
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 21

Project Review: Assignment 2

1. Practice the use of SpecC Command Line Tools
— Setup
= source /opt/sce-20100908/bin/setup.csh
— Examine simple examples
mkdir simple_tests
cd simple_tests
cp $SPECC/examples/simple/* .
Is
vi HelloWorld.sc
— Practice the compiler
e man scc
e scc HelloWorld —sc2out —vv -ww
— Practice the simulator
= _/HelloWorld
— Practice the tools
e man sir_tree
e scc Adder -sc2sir -o Adder.sir
e sir_tree -bt Adder.sir FA

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 22

(c) 2013 R. Doemer

Lecture 10

11

EECS222C: SoC Software Synthesis

Project Review: Assignment 3

Install a SpecC model of the MP3 Decoder
— Setup and unpack source code
e source /opt/sce-20100908/bin/setup.csh
= cd hw3
e gtar xvzf ~eecs222/EECS222C_S13/mad_SpecC.tar.gz
- Is
— Reuse test streams from original C code as “golden” reference streams
e In -s ../hwl/mad_C/testStream
= mkdir reference
e cp --/hwl/mad_C/spotl.pcm reference/
e cp --/hwl/mad_C/spotl_3K.pcm reference/
e cp --/hwl/mad_C/classicl.pcm reference/
= vi Makefile
» TESTSTREAMS = spotl_3K classicl spotl

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 23

Project Review: Assignment 3

2. Validate the SpecC model of the MP3 Decoder

— Compile and execute the SpecC model
= make clean
= make
= testbench testStream/spotl.mp3 spotl.pcm
— Validate the decoded MP3 stream
e diff spotl.pcm reference/spotl.pcm
— Validate the SpecC model using the provided Makefile
- make test (to run all three tests)
= make testl (torun only the first test)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 24

(c) 2013 R. Doemer

Lecture 10

12

EECS222C: SoC Software Synthesis

Project Review: Assignment 3

Analyze the specification model of the MP3 Decoder
— Generate a top-level SIR design file

= make testbench.sir
View some statistics of the model

e sir_stats testbench.sir

e sir_stats -a testbench.sir

Generate a hierarchy tree of the model

e sir_tree -blt testbench.sir

e sir_tree -blt testbench.sir Mad_Decoder
Generate a “clean” single-file SpecC model

e scc testbench -sir2sc -vv -sn -sl -psi -0 testbench_gen.sc
» Orsimply: make testbench_gen.sc

= vi testbench_gen.sc

Compile and test the single-file SpecC model

e scc testbench_gen -vv -xl huffman.o

= testbench_gen testStream/spotl.mp3 spotl.pcm
e diff spotl.pcm reference/spotl.pcm

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 25

Project Review: Assignment 3

Is there any parallelism specified in the model?
If so, where?

— Find all concurrent behaviors (behaviors that execute in parallel)
— For each parallel behavior, note

» Name of the concurrent parent behavior

» Names of the parallel executing child behaviors

Which of the parallel behaviors identified above
are candidates for parallel implementation in a MPSoC?
— In one sentence (per concurrent behavior), explain why or why not

the behavior can be implemented with parallel instances
in the desired MPSoC of an MP3 player

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 26

(c) 2013 R. Doemer

Lecture 10

13

EECS222C: SoC Software Synthesis

Project Review: Assignment 4

1. Become familiar with the System-on-Chip Environment (SCE)
— Setup
» Note that we will use the 2003 version of SCE for the tutorial:
source /opt/sce-20030530/bin/setup.csh
rm —rf ~/_sce
mkdir demo
cd demo
setup_demo
— Open the SCE Tutorial document
e acroread SCE_Tutorial/sce-tutorial.pdf &

» To protect the environment and save some trees,
please do not print the tutorial document!
It contains 250 pages and you will likely read it only once... ;-)

— Follow the SCE Tutorial instructions
e sce &
— Cleanup
* When done (or to start over), clean up your demo directory
e cd ..
e rm —rf demo

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer

27

Project Review: Assignment 4

2. Setup your MP3 Decoder model in SCE

— Setup SCE
* Note that we will use the 2010 version of SCE:
e source /opt/sce-20100908/bin/setup.csh
e rm —rf ~/._sce
e In -s hw3 hw4
e cd hwa
e sce &

— Create a new project in SCE
» Project->New
» Project->Settings
— Setinclude path to “.” (current directory)
— Setlibraries to “-x1 huffman.o”
— Set both verbosity and warning level to 2

— In the Simulator tab, set the simulation command as follows (single line!):
./%e testStream/spotl_3K.mp3 spotl_3K.pcm &&
diff reference/spotl_3K.pcm spotl_3K.pcm

» Project->SaveAs “mp3.sce”

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer

28

(c) 2013 R. Doemer

Lecture 10

14

EECS222C: SoC Software Synthesis

— ... (continued from previous page)

— Load your design model into SCE
» File->Import “testbench.sc”
» Project->AddDesign

and Rename the model to Spec

— Compile and simulate your model in SCE
» Validation->Compile
» Validation->Simulate

Project Review: Assignment 4

3. Compile and simulate your MP3 Decoder model in SCE

» Right-click on testbench.sir in the project window,

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer

4. Study your MP3 decoder model in SCE
... (continued from previous page)
Browse the structural hierarchy charts

» Select a behavior in the behavior browser

» Right-click ->Chart

» Double-click to add a level of hierarchy

» View->Connectivity

> ...

Print the hierarchy chart for the Synthesis Filter
» Select the Synth_Full behavior in the browser
» Right-click ->Chart
» Add all levels of hierarchy, but no connectivity

Print the hierarchy chart for the Channel Decoding

» Add all levels of hierarchy, including connectivity

Project Review: Assignment 4

» Window->Print.. in color (!) to file Chart_SynthFull._ps

» Display the chart of the 111_decode_channels behavior

» Window->Print.. in color (!) to file Chart_DecodeChannels.ps

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer

30

(c) 2013 R. Doemer

Lecture 10

15

EECS222C: SoC Software Synthesis

EECS222C: SoC Software Synthesis, Lecture 10

1. Profile your MP3 Decoder model in SCE
(continued from previous assignment)

Load your MP3 project in SCE

» Project->Load “mp3.sce”

Open your “Spec” design model and validate it

» Double-click on Spec.sir inthe project window
» Validation->Compile
» Validation->Simulate

Profile your MP3 decoder in SCE
» Validation->Profile

Project Review: Assignment 5

(c) 2013 R. Doemer

31

EECS222C: SoC Software Synthesis, Lecture 10

Project Review: Assignment 5

2. Analyze your Profiling Results

Use the SCE bar charts to compare the computational complexity

of the behaviors in your MP3 decoder model

» In the hierarchy browser, select behaviors of interest

(use CTRL-LeftClick to select/deselect)
» RightClick->Graphs->Computation

Identify the behavior instances X

Spec - Computation Graph

with the most computational load
* Goal is to find those components
that make good candidates
for hardware accelleration
— Short code
— Regular structure
— High computation
« Hint: There are 8 candidates
as shown in the chart on the right!
Deliverable
e ComputationProfile.pdf

P opemiions

Computation Protae

Example Computation Profile
(block names omitted)

(c) 2013 R. Doemer

32

(c) 2013 R. Doemer

Lecture 10

16

EECS222C: SoC Software Synthesis

Project Review: System Design Flow

» Step 1: Architecture Refinement

— Allocation of Processing Elements (PEs)
* Number and type of software processors
* Number and type of custom hardware units
* Number and type of system memories

— Mapping to PEs
* Map each behavior to a PE
* Map each channel to a PE
* Map each variable to a PE

— Result:

System architecture of concurrent PEs
with abstract communication via channels

» Estimated timing for computation specific to PE type

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 33

Project Review: System Design Flow

» Step 2: Scheduling Refinement
For each sequential PE (e.g. software processor),
serialize the execution of behaviors to a single thread of control
Option (a): Static scheduling
« For each set of concurrent behaviors,
determine a fixed order of execution
Option (b): Dynamic scheduling by RTOS
» Choose scheduling policy,
i.e. round-robin or priority-based
« For each set of concurrent behaviors,
determine the scheduling priority
Result:
System model with static or dynamic schedule
in each sequential PE

> Estimated total time of computation for each PE

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 34

(c) 2013 R. Doemer

Lecture 10

17

EECS222C: SoC Software Synthesis

Project Review: System Design Flow

» Step 3: Network Refinement

— Allocation of system busses
* Number and type of system busses
* Number and type of communication elements (CEs)
— Transducers: Routers or bridges
» System connectivity
— Masters and slaves
— Mapping of channels to busses and transducers

* Map each inter-PE communication channel
to a system bus (or multiple busses, if applicable)

* Routing
— Result:
Network model of the system

» Accurate representation of top-level system components
and their connectivity

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 35

Project Review: System Design Flow

» Step 4: Communication Refinement
— Allocation and specification of communication protocol(s)
for each communication link (bus)
» Type of bus protocol for each link (if applicable)
» Bus protocol parameters (e.g. bit width, etc.)
» Synchronization policy and parameters
— Polling vs. interrupt
— Mapping of addresses
» System-wide address mapping to registers and memories
» Address translation in transducers (if needed)
— Result:
Bus-functional model of the system
» Transaction Level Model (TLM)
* Pin Accurate Model (PAM)
» Accurate timing for computation and communication

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 36

(c) 2013 R. Doemer

Lecture 10

18

EECS222C: SoC Software Synthesis Lecture 10

Project Review: System Design Flow

+ Step 5: Hardware Synthesis (for HW PEs)
Allocation of Register Transfer Level (RTL) components
* Number and type of functional units (e.g. adder, multiplier, ALU)
* Number and type of storage units (e.g. registers, register files)
* Number and type of interconnecting busses (drivers, multiplexers)
Scheduling
» Basic blocks assigned to super-states
« Individual operations assigned to states (clock cycles)
Binding
» Bind functional operations to functional units
» Bind variables to storage units
» Bind assignments/transfers to busses
Result:
Synthesizable HDL description (Verilog, VHDL, or SystemC)
» Clock-cycle accurate timing for each HW PE

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 37

Project Review: System Design Flow

» Step 6: Software Generation (for SW PEs)
Generation of custom C code

» For selected target processor

» Specific to the entire system (incl. communication layers)
RTOS targeting

« Integration of selected target RTOS
Compilation to Instruction Set Architecture

* Instruction Set Simulation (ISS) integration

— Instruction-accurate or cycle-accurate

Assembly and Linking

Result:
Downloadable binary image

» Clock-cycle or instruction accurate timing for each SW PE

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 38

(c) 2013 R. Doemer 19

EECS222C: SoC Software Synthesis

Project Review: Assignment 6

= Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
— Continue from the “Spec” model of the previous assignment
— Allocate an ARM_7TDMI processor for the entire decoder
» Choose default port configuration (i.e. 20000ps bus cycle)
* Choose 50 MHz (change it from default 100MHz)
Estimate the execution time and calculate the frame delay
Perform the following refinement steps
* Architecture Refinement
* Scheduling Refinement
* Network Refinement
» Communication Refinement
— Transaction-level model (TLM)
» Code generation: TLM_C model
— Pin-accurate model (PAM)
» Instruction Set Simulator (ISS) model
— Details: /7home/eecs222/EECS222C_S13/Assignment6.txt
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer

39

Project Review: Assignment 6

= Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
— Fill the following table with the estimated/simulated frame delays

Refinement Step Model Decode time per frame
Profiling estimation Spec

Architecture Refinement Arm7Arch

Scheduling Refinement Arm7Sched

Network Refinement Arm7Net

Transaction-Level Refinement ~ Arm7TLM

C Code Generation Arm7TLM_C
Pin-Accurate Refinement Arm7PAM
Instruction Set Simulation Arm7ISS

— Submit as file: hw6/ARM7_Evaluation.pdf

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer

40

(c) 2013 R. Doemer

Lecture 10

20

EECS222C: SoC Software Synthesis

Project Review: Assignment 6

+ Discussion
— Test bench improvements
» Stimulus: calls exit!? Should not!
* Monitor: should quit the simulation and report the total time!
« Simulation: Pass the number of frames (8) as 3 argument
— Corrections to compilation settings
» Assertions are part of the DUT!? Must not!
» Turn assertions (and debug) off: pass -DNDEBUG to compiler
— Reported ISS cycles vs. reported decoding time!?

» ISS model in SCE version 2010 has a bug:
processor speed is fixed to 100Mhz!

» Switch to “latest” SCE version 2012+ (/opt/sce/bin/setup.csh)
— Profiling estimation is inaccurate!

» Several times too optimistic for the ARM7

« Calibrate profiler weight tables by corresponding factor

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 41

Project Review: Assignment 7

= Re-evaluate ARM7TDMI as a potential Processor
for a SW-plus-HW Implementation of the MP3 Decoder
— Allocate an ARM_7TDMI processor for the software
» Choose desired clock period (change it from default 10000ps)
— Allocate up to 6 custom HW units for acceleration
» Keep default clock frequency of 100 MHz
— Perform the system design refinement steps
Architecture Refinement
Scheduling Refinement
Network Refinement
Communication Refinement
— Transaction-level model (TLM)
» Code generation: TLM_C model
— Pin-accurate model (PAM)
» Instruction Set Simulator (ISS) model
— Details: /7home/eecs222/EECS222C_S13/Assignment7._txt

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 42

(c) 2013 R. Doemer

Lecture 10

21

EECS222C: SoC Software Synthesis

Project Review: Assignment 7

= Re-evaluate ARM7TDMI as a potential Processor
for a SW-plus-HW Implementation of the MP3 Decoder
— Fill the following table with the estimated/simulated frame delays

Refinement Step Model Decode time per frame
Profiling estimation Spec

Architecture Refinement Arch

Scheduling Refinement Sched

Network Refinement Net

Transaction-Level Refinement TLM

C Code Generation TLM_C
Pin-Accurate Refinement PAM
Instruction Set Simulation ISS

— Submit as file: hw7/ARM7plusHW_Evaluation.pdf

— Submit also the final ISS model: hw7/1SS_sir
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer

43

Project Review: Problem Solving...

1. Slow server response and simulator run time
— Symptoms:
» Shell commands respond very slowly

» Simulator runs unreasonably slow
(e.g. more than a minute for models above TLM)

— Analysis:

» Shared server may be overloaded
due to too many users and/or jobs

— Possible Solutions:
* Monitor the server load!
* Use uptime and/or top commands
* Login to server with lowest load

» gamma: ..., 14 users, load average: 14.08, 13.47, 11.92

» omicron: ..., O users, load average: 0.04, 0.02, 0.00

» iota: ..., 10 users, load average: 0.00, 0.02, 0.00
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 44

(c) 2013 R. Doemer

Lecture 10

22

EECS222C: SoC Software Synthesis

Project Review: Problem Solving...

2. Large frame delay in ISS model
— Symptom:

» Simulation of TLM/PAM models estimated frame delays such as
Decode time per frame = 24.282 ms

» Simulation of ISS model reports frame delays such as
Decode time per frame = 64.174 ms
— Analysis:
* TLM/PAM computation time is only estimated (by SCE profiler)
» Profiling produces only fidelity (not absolute accuracy!)
» Profiling weight tables for ARM7 assume very optimistic cycles
— Assumptions include zero cache-misses, pipeline stalls, etc.
— Possible Solutions:
» Trust the ISS, not the profiler!

» Calibrate the weight tables at allocation by a factor
(e.g.64.174 / 24.282 = 2.6x)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 45

Project Review: Problem Solving...

3. Communication times can be very slow
— Symptom:
» Simulation shows that delay per frame increases drastically
in TLM and PAM models
— Analysis:
» Communication time is not taken into account before
* TLM and PAM include accurate communication delay
» Communication can be a bottleneck for certain architectures
— Congestion due to single bus and/or high traffic
— Indirect communication from slave to slave via master
— Potential Solutions:
* Review bus network by viewing connectivity in Network model

* Introduce a separate bus between hardware components
— See Lecture7-ASPDACO7-AG-MP3.pdf

* Increase bus frequency

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 46

(c) 2013 R. Doemer

Lecture 10

23

EECS222C: SoC Software Synthesis

Project Review: Problem Solving...

4. Incorrect network setup
— Symptoms:

+ ERROR #5535: Channel instance 'ar_cc__xr0___ HW1__HW2'
connects two PEs (HW1 and HW2) not reachable with given
conectivity

+ ERROR #5533: Channel instance
‘ar_cc__ar_tid_lll_decode__ARM7__HW1' is not connected to
only one PE, which is not allowed by network refinement

— Analysis:
» Network refinement fails to map channels to specified network
» Network specification needs revision

— Potential Solutions:

» Ensure channel routing is possible (path exists)

» Ensure master/slave relationship is obeyed

» Ensure all behaviors involved are isolated

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 47

Project Review: Problem Solving...

5. IS Simulation is stuck
— Symptoms:
* PAM model simulates fine
» Derived ISS model runs but shows no progress
even after an hour
— Analysis:
« Difficult to diagnose without more data
(needs code inspection, instrumentation, debugging)
 Likely communication between CPU and slaves fails

— Potential Solutions:
* Ensure slaves listen to correct addresses

> For the AMBA bus in SCE, slave1 listens to 0x1xxx XxxX,
slave 2 listens to 0x2xxx xxxx, and so on

» Ensure scheduling (execution order) across PEs matches
(e.g. master sends X but slave waits for Y results in deadlock)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 48

(c) 2013 R. Doemer

Lecture 10

24

EECS222C: SoC Software Synthesis

Project Review: Assignment 8

= ARM7-plus-HW Implementation of the MP3 Decoder
that meets the real-time requirement
and minimizes HW resources and power
— Allocate an ARM_7TDMI processor for the software
* Choose desired clock period (change it from default 10000ps)
— Allocate up to 6 custom HW units for acceleration
* Keep default clock frequency of 100 MHz
— Perform the system design refinement steps
* Architecture Refinement
* Scheduling Refinement
* Network Refinement
+ Communication Refinement
— Transaction-level model (TLM)
» Code generation: TLM_C model
— Pin-accurate model (PAM)
» Instruction Set Simulator (ISS) model
— Details: /7home/eecs222/EECS222C_S13/Assignment8.txt

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 49

Project Review: Assignment 8

= ARM7-plus-HW Implementation of the MP3 Decoder
that meets the real-time requirement
and minimizes HW resources and power

— Fill the following table with the estimated/simulated frame delays

Refinement Step Model Decode time per frame
Profiling estimation Spec

Architecture Refinement Arch

Scheduling Refinement Sched

Network Refinement Net

Transaction-Level Refinement ~ TLM, TLM_C

Pin-Accurate Refinement PAM

Instruction Set Simulation ISS

— Submit as file: hw8/ARM7plusHW_Evaluation.pdf
— Submit also the final ISS model: hw8/1SS._sir

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 50

(c) 2013 R. Doemer

Lecture 10

25

EECS222C: SoC Software Synthesis

Project Discussion

c Q&A

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 51

Embedded Software

* Embedded Operating Systems
— General requirements
— Real-time Operating Systems (RTOS)

» Excerpts from Chapter 4.1 in

— “Embedded System Design”
Embedded Systems Foundations
of Cyber-Physical Systems
by P. Marwedel,
2 edition, Springer, 2011.

» LecturelO-subset-es-marw-4.1-rtos.pdf

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 52

(c) 2013 R. Doemer

Lecture 10

26

EECS222C: SoC Software Synthesis

Embedded Operating Systems

« Example: MicroC/OS-II
— Supported in SCE for use with ARM_7TDMI CPU

— Features

* multi-tasking real-time kernel

* real-time support (most kernel functions deterministic)

+ task management

* priority scheduling

* preemption

* ROM’able (executable from firmware)
— memory footprint about 20 KB

 portable (to over 40 different CPU architectures, 8-64bit)
— about 5500 lines of ANSI-C source code
— only small amount of processor-specific assembly code

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 53

Embedded Operating Systems

° EXa m p I e: | Application Software ‘
M ICrOC/OS_I I nCiOs-11 pCIOS-11 Conf.
{Processar-Independent Code) (Application ~Specifie Code)
— Software
0s_core.c
Structure os_flag.e
os_mbox.¢
0S_mulex.c os_cfo.h
05_Q.¢ includes.h
Os_SENLe
os_task.c
os_lime.¢
UCos-ii.e
ucos-ii.h
pC/OS-IT Port
(Provessor-Specilic Code}
os_cpuh
US_CpU_g.L
os_cpu_uS
software
hardware
CPU | [Timer
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 54

(c) 2013 R. Doemer

Lecture 10

27

EECS222C: SoC Software Synthesis

Embedded Operating Systems

« Example: MicroC/OS-II

— Kernel Services

» Task management
— up to 56 application tasks
— priority-based scheduling

» Time management
— system timer interrupt (10ms — 100ms)
— 32-bit tick counter

» Semaphore management
— inter-task communication through shared memory
— semaphore API

* Mutex management
— binary semaphore

* Memory management
— dynamic memory allocation (with fixed block size)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 55

EECS 222C Summary

« Embedded Software Synthesis
— C/C++ Reference Code
— SLDL Modeling
» System specification in SpecC
— Estimation and Exploration
* Find a suitable target platform
— Scheduling and RTOS selection
+ Static vs. dynamic scheduling
— Target Code Generation
* ANSI-C code generation for cross-compilation
— Instruction Set Simulation (ISS)

+ Simulation of execution on the target processor
— Pin- and cycle-accurate

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 56

(c) 2013 R. Doemer

Lecture 10

28

EECS222C: SoC Software Synthesis

Course Administration

* Final Exam
— Date and time

» Wednesday, June 12, 2013, until 12pm (noon)

— Format
* Delivery of Final Technical Report
* Electronic submission (turnin on server)
—Ffinal/ISS_sir
—final/Report.pdf

»Hard deadline!
* Wednesday, June 12, 2013, 12pm (noon)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer

57

(c) 2013 R. Doemer

Lecture 10

29

