
EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 1

EECS 222C:
System-on-Chip Software Synthesis

Lecture 10

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 2

Lecture 10: Overview

• Course Administration
– Course evaluation
– Final exam

• Final Technical Report
– Contents and Outline

• Project Review
– SoC Software Synthesis for a MP3 Audio Decoder
– Discussion

• Embedded Operating Systems
– RTOS requirements, examples

• Embedded Software Synthesis
– Course Summary

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 2

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 3

Course Administration

• Final Course Evaluation
– 9th through 10th week
– May 28, 2013 through June 9, 2013, 11:45pm
– Closes Sunday night!
– Online via EEE Evaluation application

• Evaluation of Course and Instructor
– Voluntary
– Anonymous
– Very valuable

• Help to improve this class!
– Please spend 5 minutes!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 4

Course Administration

• Final Exam
– Date and time

• Wednesday, June 12, 2013, until 12pm (noon)

– Format
• Delivery of Final Technical Report
• Electronic submission (turnin on server)

– final/ISS.sir

– final/Report.pdf

Hard deadline!
• Wednesday, June 12, 2013, 12pm (noon)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 3

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 5

Final Technical Report

• Title
– SoC Software Synthesis for a MP3 Audio Decoder

• Final Technical Report for EECS 222C, Spring 2013

• Author
– Your Name and ID

• Contents
– Describe the overall SoC design approach

– Outline the major steps in the design flow

– Use the MP3 decoder as case study
• Tell the story of the project assignments!

– Conclude with a summary of the lessons learned

• Length
– About 12 pages (including title page and references)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 6

Final Technical Report

• Suggested Outline
1. Title page with abstract
2. Introduction

1. Top-down embedded software design flow

3. Case study on a MP3 decoder
1. Application reference code
2. System specification model
3. Validation and profiling
4. Target architecture selection
5. Transaction Level Model (TLM)
6. C code generation and cross-compilation
7. Pin-Accurate Model (PAM)
8. Instruction Set Simulation (ISS) Model

4. Conclusion
1. Lessons learned

5. References

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 4

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 7

Project Review: Embedded Systems

• System embedded into another system
– Constraints from external input (often real-time)

– Application specific (not general purpose)

• Omnipresent in our environment
– In many application domains

– In 2005 [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Pervasive

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com

Source:
Motorola Inc

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 8

Project Review: Motivation

• Design challenges
– Often mobile

• Battery powered (low power)

– Often highly reliable
• Extreme environment (e.g. temperature)

– High performance constraints
• Often real-time requirements

– High complexity
• E.g. Mercedes Benz E-class

– 55 electronic control units

– 5 communication busses

– Tightly coupled
• Software

• Hardware

– Rapid development
for low price…

Source: Daimler

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 5

Source: Xilinx

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 9

Project Review: Embedded System Design

• Design Advantages
– Application known at design time

– Environment known at design time

– Allows for customized / optimized solution
• Improved performance

• More functionality

• At lower power

• Custom Platform, SW and HW components
– Multi-Processor System-on-Chip (MPSoC),

• Complete embedded system integrated on a chip

– General-purpose and application-specific processors

– Application Specific Integrated Circuit (ASIC)

– Field Programmable Gate Array (FPGA)

– Circuit board with off-the-shelf-components

Source: simh.trailing-edge.com

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 10

Project Review: Design Complexity Challenge

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap

HW Design
Productivity
1.6x/18 months

Capability of
Technology
2x/18 months

Software
Productivity
2x/5 years

log

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

Average HW +
SW Productivity

Additional SW
required for HW
2x/10 months

System
Design Gap

HW Design
Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 6

Project Review: HW/SW Codesign

• Traditionally, software development follows hardware

• New: Unified, concurrent Design of
– Hardware and

– Software

 Improving Time to Market
– Faster delivery of new products

– Higher probability of on time delivery

 Using a single specification model (System Model)
– New specification model

– New specification language

 Tight integration of
• software development

• hardware development

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 11

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 12

Project Review: SoC Co-Design Flow

System
Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C/C++
Code

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

• Application Case Study on a MP3 Audio Decoder:
– Given: Reference source code (mad_C.tar.gz)
– Analyzed: System Model (mad_SpecC.tar.gz)
– Refined: Platform Model with integrated ISS
– Next: System design cycle(s) to meet timing
– Finally: Hand-off to manufacturing…

Platform Model

M

M

P1 P2

IPIP

M

Source: simh.trailing-
edge.com

System-on-Chip

Specification HW/SW
Codesign

Manufacturing

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 7

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 13

Project Review: SCE Design Flow

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture

Project Review: Application Case Study

• Project Application: MP3 Audio Decoder
– Digital compression of audio data reduces

• Communication bandwidth and

• Storage requirements

– MPEG 1 Layer 3 (aka. MP3) compression algorithm
• most commonly used

• uses a variety of clever tricks to compress digital music
– by 90% or more!

• performs lossy compression

• applies perceptual science of psycho acoustic models
– exact input signal does not need to be retained

– human ear can only distinguish a certain amount of detail

– sufficient if output signal sounds identical to the human ears

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 14

[Source: CECS-TR-05-04.pdf]

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 8

Project Review: Application Case Study

• Project Application: MP3 Audio Decoder
– MP3 audio bit stream

• organized in frames of bits

• each frame contains 1152 encoded PCM samples

• frame length depends on the bit rate (quality)

• bit rate may vary in variable rate encoded streams

• frame header contains information for the frame detection

– MPEG 1 Layer 3 frame format

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 15

[Source:
CECS-TR-05-04.pdf]

Project Review: Application Case Study

• Project Application: MP3 Audio Decoder
– MP3 decoder block diagram

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 16

[Source:
CECS-TR-05-04.pdf]

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 9

Project Review: Reference Code

• Project Application: MP3 Audio Decoder
– MP3 decoder C reference code

• Underbit Technologies Inc.

• MAD: MPEG Audio Decoder
• http://www.underbit.com/products/mad

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 17

Partial function hierarchy in MP3 reference code

decodeMP3

do_layer3

III_antialias

III_dequant III_hybrid

III_i_stereoIII_synth_1to1

dct64

[Source: P. Chandraiah]

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 18

Project Review: Assignment 1

• Administration
– Linux Servers

– gamma.eecs.uci.edu (NSF client)

– omicron.eecs.uci.edu (NSF client)

• Intel Pentium based workstations

• RedHat Linux (Fedora Core 12)
• Access via secure shell protocol (ssh)

– Accounts
• User ID same as your UCI net ID

• Password as discussed in class

– SpecC Software (© by CECS, UCI)
• SpecC Compiler and Simulator

• System-on-Chip Environment (SCE)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 10

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 19

Project Review: Assignment 1

• Login on Server via SSH
– Account infos will be emailed

• Install MP3 Decoder example
– cd ~
– mkdir hw1
– cd hw1
– gtar xvzf /home/eecs222/EECS222C_S13/mad_C.tar.gz
– cd mad_C
– make clean
– make
– make test

• Become familiar with the application and its structure
– Browse and read the source files
– Draw a block diagram of the major functions

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 20

Project Review: Assignment 1

• Analyze the given MP3 Decoder application
 Questions to study:

– Example MP3 streams
• Do they play?
• Length in seconds?
• Number of samples?

– Application source code
• How many source files?
• How many lines of code?
• How many functions?

– What are the major functions?
• How do they relate?
• Function call graph?

– What are the most critical functions?
• Where is the most time spent?

– What type of operations are performed?
• Floating point?
• Others?

– Where is any potential for parallel execution?

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 11

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 21

• System Level Modeling
– Abstract description of a complete system

– Software + Hardware

• Key Concepts in System Modeling
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Project Review: System Model Concepts

B0 B1

B2 B3

System Model

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 22

Project Review: Assignment 2

1. Practice the use of SpecC Command Line Tools
– Setup

• source /opt/sce-20100908/bin/setup.csh

– Examine simple examples
• mkdir simple_tests
• cd simple_tests
• cp $SPECC/examples/simple/* .
• ls
• vi HelloWorld.sc

– Practice the compiler
• man scc
• scc HelloWorld –sc2out –vv -ww

– Practice the simulator
• ./HelloWorld

– Practice the tools
• man sir_tree
• scc Adder -sc2sir -o Adder.sir
• sir_tree -bt Adder.sir FA

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 12

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 23

Project Review: Assignment 3

1. Install a SpecC model of the MP3 Decoder
– Setup and unpack source code

• source /opt/sce-20100908/bin/setup.csh
• cd hw3
• gtar xvzf ~eecs222/EECS222C_S13/mad_SpecC.tar.gz
• ls

– Reuse test streams from original C code as “golden” reference streams
• ln -s ../hw1/mad_C/testStream
• mkdir reference
• cp ../hw1/mad_C/spot1.pcm reference/
• cp ../hw1/mad_C/spot1_3K.pcm reference/
• cp ../hw1/mad_C/classic1.pcm reference/
• vi Makefile

 TESTSTREAMS = spot1_3K classic1 spot1

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 24

Project Review: Assignment 3

2. Validate the SpecC model of the MP3 Decoder
– Compile and execute the SpecC model

• make clean
• make
• testbench testStream/spot1.mp3 spot1.pcm

– Validate the decoded MP3 stream
• diff spot1.pcm reference/spot1.pcm

– Validate the SpecC model using the provided Makefile
• make test (to run all three tests)
• make test1 (to run only the first test)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 13

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 25

Project Review: Assignment 3

3. Analyze the specification model of the MP3 Decoder
– Generate a top-level SIR design file

• make testbench.sir

– View some statistics of the model
• sir_stats testbench.sir
• sir_stats -a testbench.sir

– Generate a hierarchy tree of the model
• sir_tree -blt testbench.sir
• sir_tree -blt testbench.sir Mad_Decoder

– Generate a “clean” single-file SpecC model
• scc testbench -sir2sc -vv -sn -sl -psi -o testbench_gen.sc
• Or simply: make testbench_gen.sc
• vi testbench_gen.sc

– Compile and test the single-file SpecC model
• scc testbench_gen -vv -xl huffman.o
• testbench_gen testStream/spot1.mp3 spot1.pcm
• diff spot1.pcm reference/spot1.pcm

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 26

Project Review: Assignment 3

4. Is there any parallelism specified in the model?
If so, where?
– Find all concurrent behaviors (behaviors that execute in parallel)

– For each parallel behavior, note

• Name of the concurrent parent behavior

• Names of the parallel executing child behaviors

5. Which of the parallel behaviors identified above
are candidates for parallel implementation in a MPSoC?
– In one sentence (per concurrent behavior), explain why or why not

the behavior can be implemented with parallel instances
in the desired MPSoC of an MP3 player

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 14

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 27

Project Review: Assignment 4

1. Become familiar with the System-on-Chip Environment (SCE)
– Setup

• Note that we will use the 2003 version of SCE for the tutorial:
• source /opt/sce-20030530/bin/setup.csh
• rm –rf ~/.sce
• mkdir demo
• cd demo
• setup_demo

– Open the SCE Tutorial document
• acroread SCE_Tutorial/sce-tutorial.pdf &
• To protect the environment and save some trees,

please do not print the tutorial document!
It contains 250 pages and you will likely read it only once… ;-)

– Follow the SCE Tutorial instructions
• sce &
• ...

– Cleanup
• When done (or to start over), clean up your demo directory
• cd ..
• rm –rf demo

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 28

Project Review: Assignment 4

2. Setup your MP3 Decoder model in SCE
– Setup SCE

• Note that we will use the 2010 version of SCE:
• source /opt/sce-20100908/bin/setup.csh

• rm –rf ~/.sce

• ln -s hw3 hw4

• cd hw4

• sce &

– Create a new project in SCE
 Project->New

 Project->Settings
– Set include path to “.” (current directory)

– Set libraries to “-xl huffman.o”

– Set both verbosity and warning level to 2

– In the Simulator tab, set the simulation command as follows (single line!):
./%e testStream/spot1_3K.mp3 spot1_3K.pcm &&
diff reference/spot1_3K.pcm spot1_3K.pcm

 Project->SaveAs “mp3.sce”

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 15

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 29

Project Review: Assignment 4

3. Compile and simulate your MP3 Decoder model in SCE
– … (continued from previous page)

– Load your design model into SCE
 File->Import “testbench.sc”

 Project->AddDesign

 Right-click on testbench.sir in the project window,
and Rename the model to Spec

– Compile and simulate your model in SCE
 Validation->Compile

 Validation->Simulate

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 30

Project Review: Assignment 4

4. Study your MP3 decoder model in SCE
– … (continued from previous page)

– Browse the structural hierarchy charts
 Select a behavior in the behavior browser
 Right-click ->Chart

 Double-click to add a level of hierarchy
 View->Connectivity

 ...

– Print the hierarchy chart for the Synthesis Filter
 Select the Synth_Full behavior in the browser

 Right-click ->Chart

 Add all levels of hierarchy, but no connectivity

 Window->Print… in color (!) to file Chart_SynthFull.ps

– Print the hierarchy chart for the Channel Decoding
 Display the chart of the III_decode_channels behavior

 Add all levels of hierarchy, including connectivity

 Window->Print… in color (!) to file Chart_DecodeChannels.ps

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 16

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 31

Project Review: Assignment 5

1. Profile your MP3 Decoder model in SCE
– (continued from previous assignment)

– Load your MP3 project in SCE
 Project->Load “mp3.sce”

– Open your “Spec” design model and validate it
 Double-click on Spec.sir in the project window

 Validation->Compile

 Validation->Simulate

– Profile your MP3 decoder in SCE
 Validation->Profile

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 32

Project Review: Assignment 5

2. Analyze your Profiling Results
– Use the SCE bar charts to compare the computational complexity

of the behaviors in your MP3 decoder model
 In the hierarchy browser, select behaviors of interest

(use CTRL-LeftClick to select/deselect)
 RightClick->Graphs->Computation

– Identify the behavior instances
with the most computational load

• Goal is to find those components
that make good candidates
for hardware accelleration

– Short code

– Regular structure

– High computation

• Hint: There are 8 candidates
as shown in the chart on the right!

– Deliverable
• ComputationProfile.pdf

Example Computation Profile
(block names omitted)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 17

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 33

Project Review: System Design Flow

• Step 1: Architecture Refinement
– Allocation of Processing Elements (PEs)

• Number and type of software processors

• Number and type of custom hardware units

• Number and type of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE

• Map each variable to a PE

– Result:
System architecture of concurrent PEs
with abstract communication via channels

 Estimated timing for computation specific to PE type

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 34

Project Review: System Design Flow

• Step 2: Scheduling Refinement
– For each sequential PE (e.g. software processor),

serialize the execution of behaviors to a single thread of control

– Option (a): Static scheduling
• For each set of concurrent behaviors,

determine a fixed order of execution

– Option (b): Dynamic scheduling by RTOS
• Choose scheduling policy,

i.e. round-robin or priority-based

• For each set of concurrent behaviors,
determine the scheduling priority

– Result:
System model with static or dynamic schedule
in each sequential PE

 Estimated total time of computation for each PE

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 18

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 35

Project Review: System Design Flow

• Step 3: Network Refinement
– Allocation of system busses

• Number and type of system busses

• Number and type of communication elements (CEs)
– Transducers: Routers or bridges

• System connectivity
– Masters and slaves

– Mapping of channels to busses and transducers
• Map each inter-PE communication channel

to a system bus (or multiple busses, if applicable)

• Routing

– Result:
Network model of the system

 Accurate representation of top-level system components
and their connectivity

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 36

Project Review: System Design Flow

• Step 4: Communication Refinement
– Allocation and specification of communication protocol(s)

for each communication link (bus)
• Type of bus protocol for each link (if applicable)

• Bus protocol parameters (e.g. bit width, etc.)

• Synchronization policy and parameters
– Polling vs. interrupt

– Mapping of addresses
• System-wide address mapping to registers and memories

• Address translation in transducers (if needed)

– Result:
Bus-functional model of the system

• Transaction Level Model (TLM)

• Pin Accurate Model (PAM)

 Accurate timing for computation and communication

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 19

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 37

Project Review: System Design Flow

• Step 5: Hardware Synthesis (for HW PEs)
– Allocation of Register Transfer Level (RTL) components

• Number and type of functional units (e.g. adder, multiplier, ALU)

• Number and type of storage units (e.g. registers, register files)

• Number and type of interconnecting busses (drivers, multiplexers)

– Scheduling
• Basic blocks assigned to super-states

• Individual operations assigned to states (clock cycles)

– Binding
• Bind functional operations to functional units

• Bind variables to storage units

• Bind assignments/transfers to busses

– Result:
Synthesizable HDL description (Verilog, VHDL, or SystemC)

 Clock-cycle accurate timing for each HW PE

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 38

Project Review: System Design Flow

• Step 6: Software Generation (for SW PEs)
– Generation of custom C code

• For selected target processor

• Specific to the entire system (incl. communication layers)

– RTOS targeting
• Integration of selected target RTOS

– Compilation to Instruction Set Architecture
• Instruction Set Simulation (ISS) integration

– Instruction-accurate or cycle-accurate

– Assembly and Linking

– Result:
Downloadable binary image

 Clock-cycle or instruction accurate timing for each SW PE

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 20

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 39

Project Review: Assignment 6

 Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
– Continue from the “Spec” model of the previous assignment

– Allocate an ARM_7TDMI processor for the entire decoder
• Choose default port configuration (i.e. 20000ps bus cycle)

• Choose 50 MHz (change it from default 100MHz)

– Estimate the execution time and calculate the frame delay

– Perform the following refinement steps
• Architecture Refinement

• Scheduling Refinement

• Network Refinement

• Communication Refinement

– Transaction-level model (TLM)

» Code generation: TLM_C model

– Pin-accurate model (PAM)

» Instruction Set Simulator (ISS) model

– Details: /home/eecs222/EECS222C_S13/Assignment6.txt

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 40

Project Review: Assignment 6

 Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
– Fill the following table with the estimated/simulated frame delays

– Submit as file: hw6/ARM7_Evaluation.pdf

Refinement Step Model Decode time per frame

Profiling estimation Spec

Architecture Refinement Arm7Arch

Scheduling Refinement Arm7Sched

Network Refinement Arm7Net

Transaction-Level Refinement Arm7TLM

C Code Generation Arm7TLM_C

Pin-Accurate Refinement Arm7PAM

Instruction Set Simulation Arm7ISS

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 21

Project Review: Assignment 6

• Discussion
– Test bench improvements

• Stimulus: calls exit!? Should not!

• Monitor: should quit the simulation and report the total time!

• Simulation: Pass the number of frames (8) as 3rd argument

– Corrections to compilation settings
• Assertions are part of the DUT!? Must not!

• Turn assertions (and debug) off: pass –DNDEBUG to compiler

– Reported ISS cycles vs. reported decoding time!?
• ISS model in SCE version 2010 has a bug:

processor speed is fixed to 100Mhz!
• Switch to “latest” SCE version 2012+ (/opt/sce/bin/setup.csh)

– Profiling estimation is inaccurate!
• Several times too optimistic for the ARM7

• Calibrate profiler weight tables by corresponding factor

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 41

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 42

Project Review: Assignment 7

 Re-evaluate ARM7TDMI as a potential Processor
for a SW-plus-HW Implementation of the MP3 Decoder
– Allocate an ARM_7TDMI processor for the software

• Choose desired clock period (change it from default 10000ps)

– Allocate up to 6 custom HW units for acceleration
• Keep default clock frequency of 100 MHz

– Perform the system design refinement steps
• Architecture Refinement

• Scheduling Refinement

• Network Refinement

• Communication Refinement

– Transaction-level model (TLM)

» Code generation: TLM_C model

– Pin-accurate model (PAM)

» Instruction Set Simulator (ISS) model

– Details: /home/eecs222/EECS222C_S13/Assignment7.txt

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 22

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 43

Project Review: Assignment 7

 Re-evaluate ARM7TDMI as a potential Processor
for a SW-plus-HW Implementation of the MP3 Decoder
– Fill the following table with the estimated/simulated frame delays

– Submit as file: hw7/ARM7plusHW_Evaluation.pdf

– Submit also the final ISS model: hw7/ISS.sir

Refinement Step Model Decode time per frame

Profiling estimation Spec

Architecture Refinement Arch

Scheduling Refinement Sched

Network Refinement Net

Transaction-Level Refinement TLM

C Code Generation TLM_C

Pin-Accurate Refinement PAM

Instruction Set Simulation ISS

Project Review: Problem Solving…

1. Slow server response and simulator run time
– Symptoms:

• Shell commands respond very slowly

• Simulator runs unreasonably slow
(e.g. more than a minute for models above TLM)

– Analysis:
• Shared server may be overloaded

due to too many users and/or jobs

– Possible Solutions:
• Monitor the server load!
• Use uptime and/or top commands

• Login to server with lowest load
 gamma: ..., 14 users, load average: 14.08, 13.47, 11.92

 omicron: ..., 0 users, load average: 0.04, 0.02, 0.00

 iota: ..., 10 users, load average: 0.00, 0.02, 0.00

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 44

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 23

Project Review: Problem Solving…

2. Large frame delay in ISS model
– Symptom:

• Simulation of TLM/PAM models estimated frame delays such as
Decode time per frame = 24.282 ms

• Simulation of ISS model reports frame delays such as
Decode time per frame = 64.174 ms

– Analysis:
• TLM/PAM computation time is only estimated (by SCE profiler)

• Profiling produces only fidelity (not absolute accuracy!)

• Profiling weight tables for ARM7 assume very optimistic cycles
– Assumptions include zero cache-misses, pipeline stalls, etc.

– Possible Solutions:
• Trust the ISS, not the profiler!

• Calibrate the weight tables at allocation by a factor
(e.g. 64.174 / 24.282 ≈ 2.6x)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 45

Project Review: Problem Solving…

3. Communication times can be very slow
– Symptom:

• Simulation shows that delay per frame increases drastically
in TLM and PAM models

– Analysis:
• Communication time is not taken into account before

• TLM and PAM include accurate communication delay

• Communication can be a bottleneck for certain architectures
– Congestion due to single bus and/or high traffic

– Indirect communication from slave to slave via master

– Potential Solutions:
• Review bus network by viewing connectivity in Network model

• Introduce a separate bus between hardware components
– See Lecture7-ASPDAC07-AG-MP3.pdf

• Increase bus frequency

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 46

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 24

Project Review: Problem Solving…

4. Incorrect network setup
– Symptoms:

• ERROR #5535: Channel instance 'ar_cc__xr0__HW1__HW2'
connects two PEs (HW1 and HW2) not reachable with given
conectivity

• ERROR #5533: Channel instance
'ar_cc__ar_tid_III_decode__ARM7__HW1' is not connected to
only one PE, which is not allowed by network refinement

– Analysis:
• Network refinement fails to map channels to specified network

• Network specification needs revision

– Potential Solutions:
• Ensure channel routing is possible (path exists)

• Ensure master/slave relationship is obeyed

• Ensure all behaviors involved are isolated

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 47

Project Review: Problem Solving…

5. IS Simulation is stuck
– Symptoms:

• PAM model simulates fine

• Derived ISS model runs but shows no progress
even after an hour

– Analysis:
• Difficult to diagnose without more data

(needs code inspection, instrumentation, debugging)

• Likely communication between CPU and slaves fails

– Potential Solutions:
• Ensure slaves listen to correct addresses

 For the AMBA bus in SCE, slave1 listens to 0x1xxx xxxx,
slave 2 listens to 0x2xxx xxxx, and so on

• Ensure scheduling (execution order) across PEs matches
(e.g. master sends X but slave waits for Y results in deadlock)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 48

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 25

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 49

Project Review: Assignment 8

 ARM7-plus-HW Implementation of the MP3 Decoder
that meets the real-time requirement
and minimizes HW resources and power
– Allocate an ARM_7TDMI processor for the software

• Choose desired clock period (change it from default 10000ps)

– Allocate up to 6 custom HW units for acceleration
• Keep default clock frequency of 100 MHz

– Perform the system design refinement steps
• Architecture Refinement

• Scheduling Refinement

• Network Refinement

• Communication Refinement

– Transaction-level model (TLM)

» Code generation: TLM_C model

– Pin-accurate model (PAM)

» Instruction Set Simulator (ISS) model

– Details: /home/eecs222/EECS222C_S13/Assignment8.txt

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 50

Project Review: Assignment 8

 ARM7-plus-HW Implementation of the MP3 Decoder
that meets the real-time requirement
and minimizes HW resources and power
– Fill the following table with the estimated/simulated frame delays

– Submit as file: hw8/ARM7plusHW_Evaluation.pdf

– Submit also the final ISS model: hw8/ISS.sir

Refinement Step Model Decode time per frame

Profiling estimation Spec

Architecture Refinement Arch

Scheduling Refinement Sched

Network Refinement Net

Transaction-Level Refinement TLM, TLM_C

Pin-Accurate Refinement PAM

Instruction Set Simulation ISS

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 26

Project Discussion

• Q & A
– …

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 51

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 52

Embedded Software

• Embedded Operating Systems
– General requirements

– Real-time Operating Systems (RTOS)

 Excerpts from Chapter 4.1 in
– “Embedded System Design”

Embedded Systems Foundations
of Cyber-Physical Systems

by P. Marwedel,
2nd edition, Springer, 2011.

 Lecture10-subset-es-marw-4.1-rtos.pdf

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 27

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 53

Embedded Operating Systems

• Example: MicroC/OS-II

– Supported in SCE for use with ARM_7TDMI CPU

– Features
• multi-tasking real-time kernel

• real-time support (most kernel functions deterministic)

• task management

• priority scheduling

• preemption

• ROM’able (executable from firmware)
– memory footprint about 20 KB

• portable (to over 40 different CPU architectures, 8-64bit)
– about 5500 lines of ANSI-C source code

– only small amount of processor-specific assembly code

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 54

Embedded Operating Systems

• Example:
MicroC/OS-II
– Software

Structure

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 28

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 55

Embedded Operating Systems

• Example: MicroC/OS-II

– Kernel Services
• Task management

– up to 56 application tasks

– priority-based scheduling

• Time management
– system timer interrupt (10ms – 100ms)

– 32-bit tick counter

• Semaphore management
– inter-task communication through shared memory

– semaphore API

• Mutex management
– binary semaphore

• Memory management
– dynamic memory allocation (with fixed block size)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 56

EECS 222C Summary

• Embedded Software Synthesis
– C/C++ Reference Code
– SLDL Modeling

• System specification in SpecC

– Estimation and Exploration
• Find a suitable target platform

– Scheduling and RTOS selection
• Static vs. dynamic scheduling

– Target Code Generation
• ANSI-C code generation for cross-compilation

– Instruction Set Simulation (ISS)
• Simulation of execution on the target processor

– Pin- and cycle-accurate

EECS222C: SoC Software Synthesis Lecture 10

(c) 2013 R. Doemer 29

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2013 R. Doemer 57

Course Administration

• Final Exam
– Date and time

• Wednesday, June 12, 2013, until 12pm (noon)

– Format
• Delivery of Final Technical Report
• Electronic submission (turnin on server)

– final/ISS.sir

– final/Report.pdf

Hard deadline!
• Wednesday, June 12, 2013, 12pm (noon)

