EECS 222C: System-on-Chip Software Synthesis Lecture 5

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 5: Overview

- Assignment 3
 - Discussion
- System-on-Chip Design Environment
 - SoC Abstraction Levels
 - Top-down Design Methodology
 - System-on-Chip Environment (SCE)
 - Interactive Demonstration
 - GSM Vocoder, Model Analysis
- Assignment 4

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2013 R. Doemer

2

- 1. Install a SpecC model of the MP3 Decoder
 - Setup and unpack source code
 - source /opt/sce-20100908/bin/setup.csh
 - · cd hw3
 - gtar xvzf ~eecs222/EECS222C_S13/mad_SpecC.tar.gz
 - . le
 - Reuse test streams from original C code as "golden" reference streams
 - ln -s ../hw1/mad_C/testStream
 - · mkdir reference
 - cp ../hw1/mad_C/spot1.pcm reference/
 - cp ../hw1/mad_C/spot1_3K.pcm reference/
 - cp ../hw1/mad_C/classic1.pcm reference/
 - vi Makefile
 - > TESTSTREAMS = spot1_3K classic1 spot1

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2013 R. Doemer

3

Assignment 3

- 2. Validate the SpecC model of the MP3 Decoder
 - Compile and execute the SpecC model
 - make clean
 - make
 - testbench testStream/spot1.mp3 spot1.pcm
 - Validate the decoded MP3 stream
 - diff spot1.pcm reference/spot1.pcm
 - Validate the SpecC model using the provided Makefile
 - make test (to run all three tests)
 - make test1 (to run only the first test)

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2013 R. Doemer

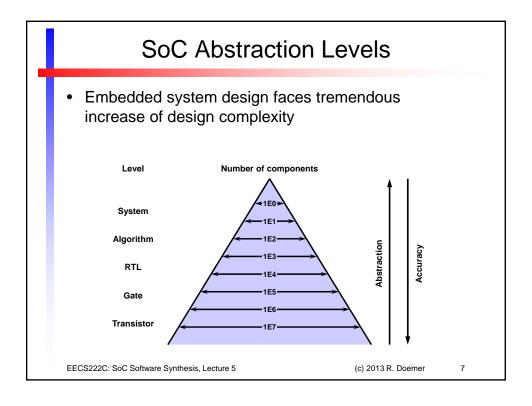
4

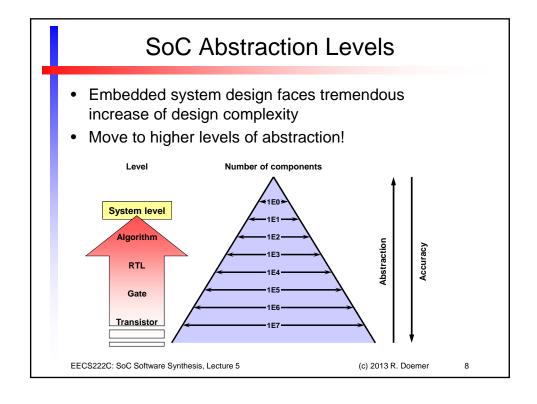
- 3. Analyze the specification model of the MP3 Decoder
 - Generate a top-level SIR design file
 - make testbench.sir
 - View some statistics of the model
 - sir_stats testbench.sir
 - sir_stats -a testbench.sir
 - Generate a hierarchy tree of the model
 - sir_tree -blt testbench.sir
 - sir_tree -blt testbench.sir Mad_Decoder
 - Generate a "clean" single-file SpecC model
 - scc testbench -sir2sc -vv -sn -sl -psi -o testbench_gen.sc
 - Or simply: make testbench_gen.sc
 - vi testbench_gen.sc
 - Compile and test the single-file SpecC model
 - scc testbench_gen -vv -xl huffman.o
 - testbench_gen testStream/spot1.mp3 spot1.pcm
 - diff spot1.pcm reference/spot1.pcm

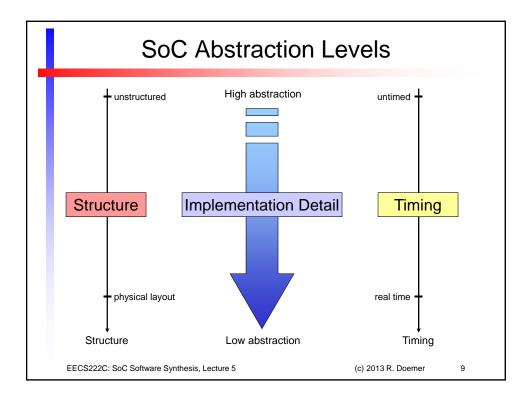
EECS222C: SoC Software Synthesis, Lecture 5

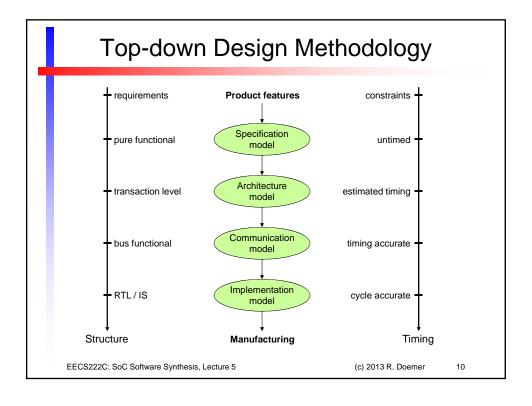
(c) 2013 R. Doemer

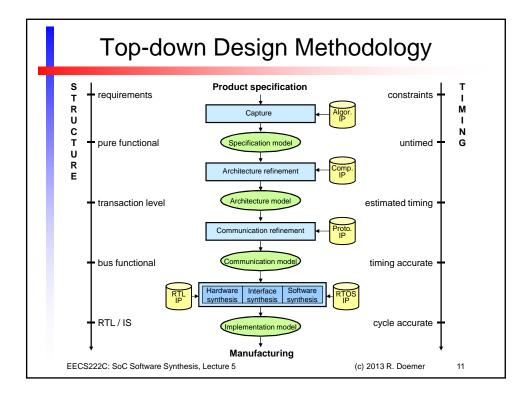
5

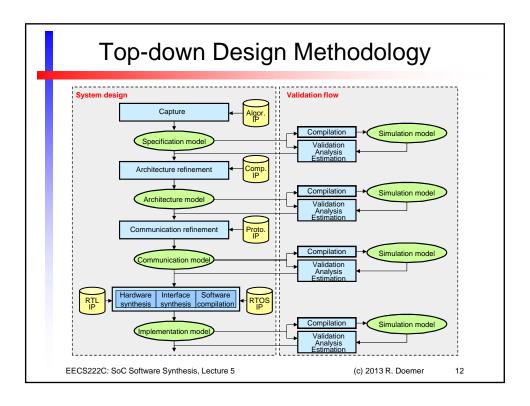

Assignment 3

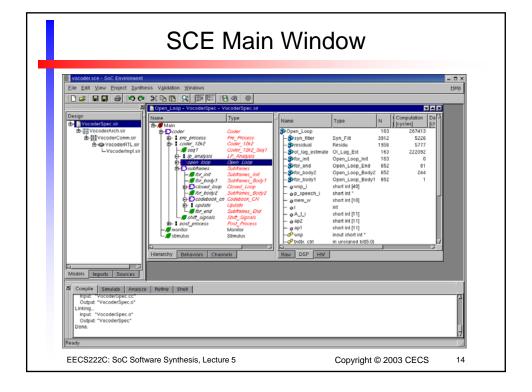

- 4. Is there any parallelism specified in the model? If so, where?
 - Find all concurrent behaviors (behaviors that execute in parallel)
 - For each parallel behavior, note
 - · Name of the concurrent parent behavior
 - Names of the parallel executing child behaviors
- 5. Which of the parallel behaviors identified above are candidates for parallel implementation in a MPSoC?
 - In one sentence (per concurrent behavior), explain why or why not the behavior can be implemented with parallel instances in the desired MPSoC of an MP3 player

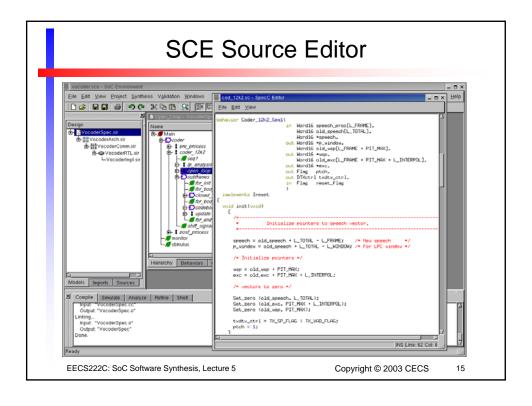

EECS222C: SoC Software Synthesis, Lecture 5

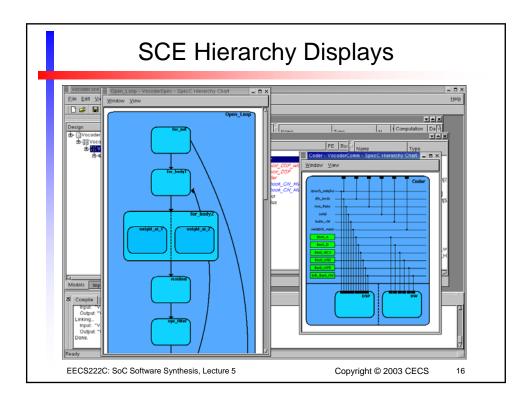

(c) 2013 R. Doemer

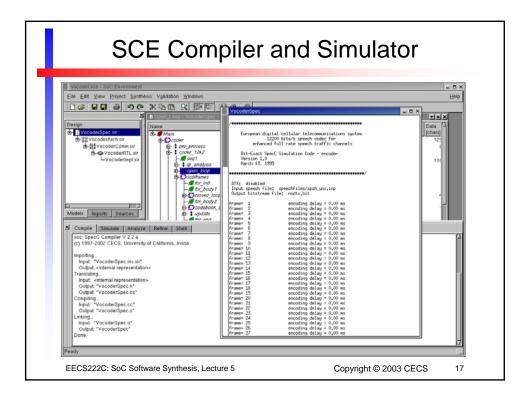

6

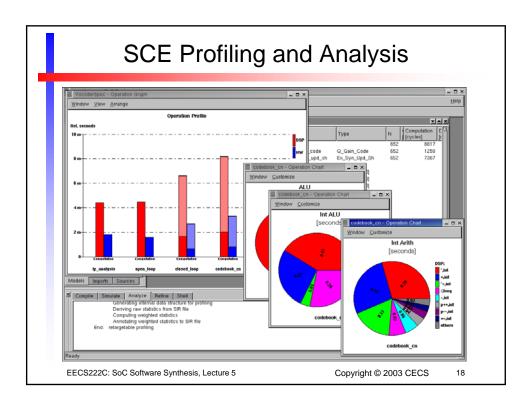



System-on-Chip Environment (SCE)


- Integrated Development Environment (IDE) with support of:
 - Graphical frontend (sce, scchart)
 - SLDL-aware editor (sced)
 - Compiler and simulator (scc)
 - Profiling and analysis (scprof)
 - Architecture refinement (scar)
 - RTOS refinement (scos)
 - Communication refinement (sccr)
 - RTL refinement (scrt1)
 - Software refinement (sc2c)
 - Scripting interface (scsh)
 - Tools and utilities ...


EECS222C: SoC Software Synthesis, Lecture 5


(c) 2013 R. Doemer


13

SCE Demonstration

- Design example: GSM Vocoder
 - Enhanced full-rate voice codec
 - GSM standard for mobile telephony (GSM 06.10)
 - · Lossy voice encoding/decoding
 - Incoming speech samples @ 104 kbit/s
 - Encoded bit stream @ 12.2 kbit/s
 - Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
 - Real-time constraint:
 - max. 20ms per speech frame (max. total of 3.26s for sample speech file)
 - SpecC specification model
 - 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
 - · 73 leaf behaviors
 - 9139 formatted lines of SpecC code (~13000 lines of original C code, including comments)

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2013 R. Doemer

19

Assignment 4

- 1. Become familiar with the System-on-Chip Environment (SCE)
 - Setup
 - Note that we will use the 2003 version of SCE for the tutorial:
 - source /opt/sce-20030530/bin/setup.csh
 - rm -rf ~/.sce
 - mkdir demo
 - cd demo
 - setup_demo
 - Open the SCE Tutorial document
 - acroread SCE_Tutorial/sce-tutorial.pdf &
 - To protect the environment and save some trees, please do not print the tutorial document! It contains 250 pages and you will likely read it only once...;-)
 - Follow the SCE Tutorial instructions
 - sce &
 - ...
 - Cleanup
 - When done (or to start over), clean up your demo directory
 - · cd ..
 - rm -rf demo

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2013 R. Doemer

20

- 2. Setup your MP3 Decoder model in SCE
 - Setup SCE
 - Note that we will use the 2010 version of SCE:
 - source /opt/sce-20100908/bin/setup.csh
 - rm -rf ~/.sce
 - ln -s hw3 hw4
 - cd hw4
 - sce &
 - Create a new project in SCE
 - > Project->New
 - Project->Settings
 - Set include path to "." (current directory)
 - Set libraries to "-xl huffman.o"
 - Set both verbosity and warning level to 2
 - In the Simulator tab, set the simulation command as follows (single line!):
 ./%e testStream/spot1_3K.mp3 spot1_3K.pcm && diff reference/spot1_3K.pcm spot1_3K.pcm
 - Project->SaveAs "mp3.sce"

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2013 R. Doemer

21

Assignment 4

- 3. Compile and simulate your MP3 Decoder model in SCE
 - ... (continued from previous page)
 - Load your design model into SCE
 - File->Import "testbench.sc"
 - Project->AddDesign
 - Right-click on testbench.sir in the project window, and Rename the model to Spec
 - Compile and simulate your model in SCE
 - > Validation->Compile
 - Validation->Simulate

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2013 R. Doemer

22

- 4. Study your MP3 decoder model in SCE
 - ... (continued from previous page)
 - Browse the structural hierarchy charts
 - > Select a behavior in the behavior browser
 - > Right-click ->Chart
 - > Double-click to add a level of hierarchy
 - View->Connectivity
 - ▶ ...
 - Print the hierarchy chart for the Synthesis Filter
 - > Select the synth_Full behavior in the browser
 - > Right-click ->Chart
 - > Add all levels of hierarchy, but no connectivity
 - Window->Print... in color (!) to file Chart_SynthFull.ps
 - Print the hierarchy chart for the Channel Decoding
 - > Display the chart of the III_decode_channels behavior
 - > Add all levels of hierarchy, including connectivity
 - > Window->Print... in color (!) to file Chart_DecodeChannels.ps

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2013 R. Doemer

23

(c) 2013 R. Doemer

12