
EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 1

EECS 222C:
System-on-Chip Software Synthesis

Lecture 5

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 2

Lecture 5: Overview

• Assignment 3
– Discussion

• System-on-Chip Design Environment
– SoC Abstraction Levels

– Top-down Design Methodology

– System-on-Chip Environment (SCE)

– Interactive Demonstration
• GSM Vocoder, Model Analysis

• Assignment 4



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 2

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 3

Assignment 3

1. Install a SpecC model of the MP3 Decoder
– Setup and unpack source code

• source /opt/sce-20100908/bin/setup.csh
• cd hw3
• gtar xvzf ~eecs222/EECS222C_S13/mad_SpecC.tar.gz
• ls

– Reuse test streams from original C code as “golden” reference streams
• ln -s ../hw1/mad_C/testStream
• mkdir reference
• cp ../hw1/mad_C/spot1.pcm reference/
• cp ../hw1/mad_C/spot1_3K.pcm reference/
• cp ../hw1/mad_C/classic1.pcm reference/
• vi Makefile

 TESTSTREAMS = spot1_3K classic1 spot1

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 4

Assignment 3

2. Validate the SpecC model of the MP3 Decoder
– Compile and execute the SpecC model

• make clean
• make
• testbench testStream/spot1.mp3 spot1.pcm

– Validate the decoded MP3 stream
• diff spot1.pcm reference/spot1.pcm

– Validate the SpecC model using the provided Makefile
• make test (to run all three tests)
• make test1 (to run only the first test)



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 3

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 5

Assignment 3

3. Analyze the specification model of the MP3 Decoder
– Generate a top-level SIR design file

• make testbench.sir

– View some statistics of the model
• sir_stats testbench.sir
• sir_stats -a testbench.sir

– Generate a hierarchy tree of the model
• sir_tree -blt testbench.sir
• sir_tree -blt testbench.sir Mad_Decoder

– Generate a “clean” single-file SpecC model
• scc testbench -sir2sc -vv -sn -sl -psi -o testbench_gen.sc
• Or simply: make testbench_gen.sc
• vi testbench_gen.sc

– Compile and test the single-file SpecC model
• scc testbench_gen -vv -xl huffman.o
• testbench_gen testStream/spot1.mp3 spot1.pcm
• diff spot1.pcm reference/spot1.pcm

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 6

Assignment 3

4. Is there any parallelism specified in the model?
If so, where?
– Find all concurrent behaviors (behaviors that execute in parallel)

– For each parallel behavior, note

• Name of the concurrent parent behavior

• Names of the parallel executing child behaviors

5. Which of the parallel behaviors identified above
are candidates for parallel implementation in a MPSoC?
– In one sentence (per concurrent behavior), explain why or why not

the behavior can be implemented with parallel instances
in the desired MPSoC of an MP3 player



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 4

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 7

SoC Abstraction Levels

• Embedded system design faces tremendous
increase of design complexity

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

System

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 8

System level
1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

SoC Abstraction Levels

• Embedded system design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 5

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 9

SoC Abstraction Levels

TimingLow abstraction

High abstraction

Implementation Detail

Structure

physical layout

unstructured

Structure

real time

untimed

Timing

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 10

Top-down Design Methodology

Implementation
model

Communication
model

Architecture
model

Specification
model

Manufacturing

Product features

Structure

pure functional

transaction level

bus functional

RTL / IS

requirements

Timing

untimed

estimated timing

timing accurate

cycle accurate

constraints



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 6

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 11

Top-down Design Methodology

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 12

Top-down Design Methodology

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 7

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 13

System-on-Chip Environment (SCE)

• Integrated Development Environment (IDE)
with support of:
– Graphical frontend (sce, scchart)

– SLDL-aware editor (sced)

– Compiler and simulator (scc)

– Profiling and analysis (scprof)

– Architecture refinement (scar)

– RTOS refinement (scos)

– Communication refinement (sccr)

– RTL refinement (scrtl)

– Software refinement (sc2c)

– Scripting interface (scsh)

– Tools and utilities ...

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 14

SCE Main Window

Copyright © 2003 CECS



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 8

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 15

SCE Source Editor

Copyright © 2003 CECS

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 16

SCE Hierarchy Displays

Copyright © 2003 CECS



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 9

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 17

SCE Compiler and Simulator

Copyright © 2003 CECS

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 18

SCE Profiling and Analysis

Copyright © 2003 CECS



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 10

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 19

SCE Demonstration

• Design example: GSM Vocoder
– Enhanced full-rate voice codec

• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s

• Encoded bit stream @ 12.2 kbit/s

• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)

• 73 leaf behaviors

• 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 20

Assignment 4

1. Become familiar with the System-on-Chip Environment (SCE)
– Setup

• Note that we will use the 2003 version of SCE for the tutorial:
• source /opt/sce-20030530/bin/setup.csh
• rm –rf ~/.sce
• mkdir demo
• cd demo
• setup_demo

– Open the SCE Tutorial document
• acroread SCE_Tutorial/sce-tutorial.pdf &
• To protect the environment and save some trees,

please do not print the tutorial document!
It contains 250 pages and you will likely read it only once… ;-)

– Follow the SCE Tutorial instructions
• sce &
• ...

– Cleanup
• When done (or to start over), clean up your demo directory
• cd ..
• rm –rf demo



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 11

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 21

Assignment 4

2. Setup your MP3 Decoder model in SCE
– Setup SCE

• Note that we will use the 2010 version of SCE:
• source /opt/sce-20100908/bin/setup.csh

• rm –rf ~/.sce

• ln -s hw3 hw4

• cd hw4

• sce &

– Create a new project in SCE
 Project->New

 Project->Settings
– Set include path to “.” (current directory)

– Set libraries to “-xl huffman.o”

– Set both verbosity and warning level to 2

– In the Simulator tab, set the simulation command as follows (single line!):
./%e testStream/spot1_3K.mp3 spot1_3K.pcm &&
diff reference/spot1_3K.pcm spot1_3K.pcm

 Project->SaveAs “mp3.sce”

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 22

Assignment 4

3. Compile and simulate your MP3 Decoder model in SCE
– … (continued from previous page)

– Load your design model into SCE
 File->Import “testbench.sc”

 Project->AddDesign

 Right-click on testbench.sir in the project window,
and Rename the model to Spec

– Compile and simulate your model in SCE
 Validation->Compile

 Validation->Simulate



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 12

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 23

Assignment 4

4. Study your MP3 decoder model in SCE
– … (continued from previous page)

– Browse the structural hierarchy charts
 Select a behavior in the behavior browser
 Right-click ->Chart

 Double-click to add a level of hierarchy
 View->Connectivity

 ...

– Print the hierarchy chart for the Synthesis Filter
 Select the Synth_Full behavior in the browser

 Right-click ->Chart

 Add all levels of hierarchy, but no connectivity

 Window->Print… in color (!) to file Chart_SynthFull.ps

– Print the hierarchy chart for the Channel Decoding
 Display the chart of the III_decode_channels behavior

 Add all levels of hierarchy, including connectivity

 Window->Print… in color (!) to file Chart_DecodeChannels.ps


