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Lecture 5: Overview

• Assignment 3
– Discussion

• System-on-Chip Design Environment
– SoC Abstraction Levels

– Top-down Design Methodology

– System-on-Chip Environment (SCE)

– Interactive Demonstration
• GSM Vocoder, Model Analysis

• Assignment 4
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Assignment 3

1. Install a SpecC model of the MP3 Decoder
– Setup and unpack source code

• source /opt/sce-20100908/bin/setup.csh
• cd hw3
• gtar xvzf ~eecs222/EECS222C_S13/mad_SpecC.tar.gz
• ls

– Reuse test streams from original C code as “golden” reference streams
• ln -s ../hw1/mad_C/testStream
• mkdir reference
• cp ../hw1/mad_C/spot1.pcm reference/
• cp ../hw1/mad_C/spot1_3K.pcm reference/
• cp ../hw1/mad_C/classic1.pcm reference/
• vi Makefile

 TESTSTREAMS = spot1_3K classic1 spot1
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Assignment 3

2. Validate the SpecC model of the MP3 Decoder
– Compile and execute the SpecC model

• make clean
• make
• testbench testStream/spot1.mp3 spot1.pcm

– Validate the decoded MP3 stream
• diff spot1.pcm reference/spot1.pcm

– Validate the SpecC model using the provided Makefile
• make test (to run all three tests)
• make test1 (to run only the first test)



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 3

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 5

Assignment 3

3. Analyze the specification model of the MP3 Decoder
– Generate a top-level SIR design file

• make testbench.sir

– View some statistics of the model
• sir_stats testbench.sir
• sir_stats -a testbench.sir

– Generate a hierarchy tree of the model
• sir_tree -blt testbench.sir
• sir_tree -blt testbench.sir Mad_Decoder

– Generate a “clean” single-file SpecC model
• scc testbench -sir2sc -vv -sn -sl -psi -o testbench_gen.sc
• Or simply: make testbench_gen.sc
• vi testbench_gen.sc

– Compile and test the single-file SpecC model
• scc testbench_gen -vv -xl huffman.o
• testbench_gen testStream/spot1.mp3 spot1.pcm
• diff spot1.pcm reference/spot1.pcm
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Assignment 3

4. Is there any parallelism specified in the model?
If so, where?
– Find all concurrent behaviors (behaviors that execute in parallel)

– For each parallel behavior, note

• Name of the concurrent parent behavior

• Names of the parallel executing child behaviors

5. Which of the parallel behaviors identified above
are candidates for parallel implementation in a MPSoC?
– In one sentence (per concurrent behavior), explain why or why not

the behavior can be implemented with parallel instances
in the desired MPSoC of an MP3 player
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SoC Abstraction Levels

• Embedded system design faces tremendous
increase of design complexity
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SoC Abstraction Levels

• Embedded system design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!
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SoC Abstraction Levels
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Top-down Design Methodology
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Top-down Design Methodology
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Top-down Design Methodology
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System-on-Chip Environment (SCE)

• Integrated Development Environment (IDE)
with support of:
– Graphical frontend (sce, scchart)

– SLDL-aware editor (sced)

– Compiler and simulator (scc)

– Profiling and analysis (scprof)

– Architecture refinement (scar)

– RTOS refinement (scos)

– Communication refinement (sccr)

– RTL refinement (scrtl)

– Software refinement (sc2c)

– Scripting interface (scsh)

– Tools and utilities ...
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SCE Main Window

Copyright © 2003 CECS
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SCE Source Editor

Copyright © 2003 CECS
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SCE Hierarchy Displays

Copyright © 2003 CECS



EECS222C: SoC Software Synthesis Lecture 5

(c) 2013 R. Doemer 9

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2013 R. Doemer 17

SCE Compiler and Simulator

Copyright © 2003 CECS
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SCE Profiling and Analysis

Copyright © 2003 CECS
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SCE Demonstration

• Design example: GSM Vocoder
– Enhanced full-rate voice codec

• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s

• Encoded bit stream @ 12.2 kbit/s

• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)

• 73 leaf behaviors

• 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)
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Assignment 4

1. Become familiar with the System-on-Chip Environment (SCE)
– Setup

• Note that we will use the 2003 version of SCE for the tutorial:
• source /opt/sce-20030530/bin/setup.csh
• rm –rf ~/.sce
• mkdir demo
• cd demo
• setup_demo

– Open the SCE Tutorial document
• acroread SCE_Tutorial/sce-tutorial.pdf &
• To protect the environment and save some trees,

please do not print the tutorial document!
It contains 250 pages and you will likely read it only once… ;-)

– Follow the SCE Tutorial instructions
• sce &
• ...

– Cleanup
• When done (or to start over), clean up your demo directory
• cd ..
• rm –rf demo
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Assignment 4

2. Setup your MP3 Decoder model in SCE
– Setup SCE

• Note that we will use the 2010 version of SCE:
• source /opt/sce-20100908/bin/setup.csh

• rm –rf ~/.sce

• ln -s hw3 hw4

• cd hw4

• sce &

– Create a new project in SCE
 Project->New

 Project->Settings
– Set include path to “.” (current directory)

– Set libraries to “-xl huffman.o”

– Set both verbosity and warning level to 2

– In the Simulator tab, set the simulation command as follows (single line!):
./%e testStream/spot1_3K.mp3 spot1_3K.pcm &&
diff reference/spot1_3K.pcm spot1_3K.pcm

 Project->SaveAs “mp3.sce”
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Assignment 4

3. Compile and simulate your MP3 Decoder model in SCE
– … (continued from previous page)

– Load your design model into SCE
 File->Import “testbench.sc”

 Project->AddDesign

 Right-click on testbench.sir in the project window,
and Rename the model to Spec

– Compile and simulate your model in SCE
 Validation->Compile

 Validation->Simulate
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Assignment 4

4. Study your MP3 decoder model in SCE
– … (continued from previous page)

– Browse the structural hierarchy charts
 Select a behavior in the behavior browser
 Right-click ->Chart

 Double-click to add a level of hierarchy
 View->Connectivity

 ...

– Print the hierarchy chart for the Synthesis Filter
 Select the Synth_Full behavior in the browser

 Right-click ->Chart

 Add all levels of hierarchy, but no connectivity

 Window->Print… in color (!) to file Chart_SynthFull.ps

– Print the hierarchy chart for the Channel Decoding
 Display the chart of the III_decode_channels behavior

 Add all levels of hierarchy, including connectivity

 Window->Print… in color (!) to file Chart_DecodeChannels.ps


