| |
tlJ technische universitat ﬁ fakultat fur informatik
dortmund informatik 12

Classical scheduling
algorithms
for aperiodic
systems

Peter Marwedel
TU Dortmund, Informatik 12
Germany

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

(2010% 12 A 10 A) Mcrousttcopyat restrotons appi:
Subset of slides selected for EECS 222C.

Periodic and aperiodic tasks

real-time scheduling

-— —

hard deadiines soll deadlines

A = =

=
- T

l/d"\ /"‘f. £\ SN
Def.: Tasks which must be executed once every p units of
time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation
between the times at which they request the processor.

technische universitat = fakultat fur © p. marwedel, 2
dortmund informatik informatik 12, 2010 e

Aperiodic scheduling; - Scheduling
with no precedence constraints -

Let {T; } be a set of tasks. Let:
= ¢;be the execution time of T;,
= d; be the deadline interval, that is,
the time between T, becoming available
and the time until which T; has to finish execution.
= |, be the laxity or slack, defined as |; = d; - ¢;
= f, be the finishing time.

A d.
7
Availability of Task —— ==
G]i
' 4
technische universitat = fakultat fur © p. marwedel,
L dortmund informatik informatik 12, 2010

Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due
date (deadline) first.

— =

fof f

EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

technische universitat = fakultat fur © p. marwedel,
L L dortmund informatik informatik 12, 2010

Optimality of EDD

EDD is optimal, since it follows Jackson's rule:

Given a set of n independent tasks, any algorithm that
executes the tasks in order of non-decreasing (absolute)
deadlines is optimal with respect to minimizing the maximum
lateness.

Proof (See Buttazzo, 2002):
(omitted in EECS 222C)

technische universitat = fakultat fur © p. marwedel, 5
dortmund informatik informatik 12, 2010 -

Earliest Deadline First (EDF)
- Horn’s Theorem -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum
lateness.

technische universitat = fakultat fur © p. marwedel, 6
dortmund informatik informatik 12, 2010 -0

Earliest Deadline First (EDF)
- Algorithm -

Earliest deadline first (EDF) algorithm:
Each time a new ready task arrives:
It is inserted into a queue of ready tasks, sorted by their
absolute deadlines. Task at head of queue is executed.
If a newly arrived task is inserted at the head of the
gueue, the currently executing task is preempted.
Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n?);
(less with binary search or bucket arrays).

Sorted queue

CY X XoX)
[
Executing task
= | technische universitat =" fakultat fur © p. marwedel, S 7.
%= dortmund L. _informatik informatik 12, 2010
Earliest Deadline First (EDF)
- Example -
arrival duration | deadline
| o 10 33
Task\ arrivals | 7, 4 3 28
R | 5 10 29

J

Earlier deadline Later deadline
& preemption & no preemption
: .f technische universitat ~" fakultat fur © p. marwedel, . 8-

' dortmund . _informatik informatik 12, 2010

Optimality of EDF

To be shown: EDF minimizes maximum lateness.

Proof (Buttazzo, 2002):

(omitted in EECS 222C)

technische universitét = fakultat fir
dortmund informatik

© p. marwedel,
informatik 12, 2010

Least laxity (LL),
Least Slack Time First (LST)

Priorities = decreasing function of the laxity
(lower laxity = higher priority); changing priority; preemptive.

arrival | duration | deadline
7y 0 10 33
T 4 3 28 1(T4)=33-15-6=12
/1 (T3)729-15-2=12

Ty 5 10 29 .
R R e |
rz b i

) : L
Iy | | [] []

1(T4)=33-4-6=23] (T;)=33-5-6=22
1(T)=28-4-3=21 [(T,)=28-5-2=21
](T3)=29-5-10=14

technische universitét = fakultét fir
dortmund informatik

1(14)=33-13-6=14 [(T)=33-16-6=11

1(T,)=28-13-2=13 [(I3)=29-16-1=12
1(T3)=29-13-2=14

© p. marwedel,

informatik 12, 2010 - 10-

Properties

LL is also an optimal scheduling for mono-processor
systems.

Not sufficient to call scheduler & re-compute laxity just at
task arrival times.

Overhead for calls of the scheduler.
Many context switches.
Dynamic priorities = cannot be used with a fixed prio OS.

LL scheduling requires the knowledge of the execution
time.

Detects missed deadlines early.

technische universitat = fakultat fur © p. marwedel,

dortmund informatik informatik 12, 2010 - 11-

Scheduling without preemption (1)

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.

Proof: Suppose: optimal schedulers never leave processor
idle.

technische universitat * fakultat fur © p. marwedel,

dortmund informatik informatik 12, 2010 - 12-

Scheduling without preemption (2)

T,: periodic, ¢, =2,p,=4,d, =4

T,: occasionally available at times 4*n+1,c,=1,d,= 1

T, has to start at t =0

< deadline missed, but schedule is possible (start T, first)
@ scheduler is not optimal < contradiction! g.e.d.

Available Missed deadline
{
=

| | | | \ | \ \ T [
0 1 2 3 < 5 6 P 8 9 t

, y technische universitat ® fakultat fur © p. marwedel, 13
dortmund informatik informatik 12, 2010 - -

Ty

Scheduling without preemption

Preemption not allowed: = optimal schedules may leave
processor idle to finish tasks with early deadlines arriving late.

& Knowledge about the future is needed for optimal
scheduling algorithms
< No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem
becomes NP-hard in general. B&B typically used.

technische universitat * fakultat fur © p. marwedel, 14
dortmund informatik informatik 12, 2010 - -

