EECS222C: SoC Software Synthesis

EECS 222C.:
System-on-Chip Software Synthesis
Lecture 7

Rainer D6mer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 7: Overview

Assignment 5
— Discussion

Refinement-based System Design Flow
— Refinement steps

Example Case Study

— Floating-point based MP3 decoder

Assignment 6

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 7



EECS222C: SoC Software Synthesis

Assignment 5

1. Profile your MP3 Decoder model in SCE

(continued from previous assignment)

Load your MP3 project in SCE
» Project->Load “mp3.sce”

Open your “Spec” design model and validate it

» Double-click on Spec.sir inthe project window

» Validation->Compile
» Validation->Simulate

Profile your MP3 decoder in SCE
» Validation->Profile

EECS222C: SoC Software Synthesis, Lecture 7

(c) 2013 R. Doemer

Assignment 5

2. Analyze your Profiling Results
Use the SCE bar charts to compare the computational complexity

of the behaviors in your MP3 decoder model

» In the hierarchy browser, select behaviors of interest

(use CTRL-LeftClick to select/deselect)
» RightClick->Graphs->Computation

Identify the behavior instances X

Spec - Computation Graph

with the most computational load .
e Goal is to find those components
that make good candidates
for hardware accelleration
— Short code
— Regular structure
— High computation
¢ Hint: There are 8 candidates
as shown in the chart on the right!
Deliverable
e ComputationProfile.pdf

EECS222C: SoC Software Synthesis, Lecture 7

Computation Protae

Example Computation Profile
(block names omitted)

(c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 7



EECS222C: SoC Software Synthesis

Refinement-based System Design Flow

Simulation model

! Validation
s ‘_’l Analysis

'
I

'

I

I

'

Architecture model 3
'

i

I

'

'

I

Simulation model

Validation
T ) | \_'l Analysis

i v

<> m
'
I Communication refinement 1
P 1
"
T 8 Simulation model
Communication model —
1 \_.l Validation
T ) Analysis
l I| il
3

]
i
'
i Hardware | Interface | Software b
H R;EL synthesis | synthesis [compilation RTSS P
i i
'

I

|

'
- i Compilation Simulation model
Implementation model x
: '
v

Validation
Analysis

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 5

Refinement-based System Design Flow

» Step 1: Architecture Refinement
— Allocation of Processing Elements (PEs)
* Number and type of software processors
* Number and type of custom hardware units
* Number and type of system memories
— Mapping to PEs
* Map each behavior to a PE
e Map each channel to a PE
« Map each variable to a PE
— Result:
System architecture of concurrent PEs
with abstract communication via channels

» Estimated timing for computation specific to PE type

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 6

(c) 2013 R. Doemer

Lecture 7



EECS222C: SoC Software Synthesis

Refinement-based System Design Flow

» Step 2: Scheduling Refinement
For each sequential PE (e.g. software processor),
serialize the execution of behaviors to a single thread of control
Option (a): Static scheduling
* For each set of concurrent behaviors,
determine a fixed order of execution
Option (b): Dynamic scheduling by RTOS
» Choose scheduling policy,
i.e. round-robin or priority-based
* For each set of concurrent behaviors,
determine the scheduling priority
Result:
System model with static or dynamic schedule
in each sequential PE

» Estimated total time of computation for each PE

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 7

Refinement-based System Design Flow

» Step 3: Network Refinement

— Allocation of system busses
* Number and type of system busses
* Number and type of communication elements (CESs)
— Transducers: Routers or bridges
e System connectivity
— Masters and slaves
— Mapping of channels to busses and transducers

e Map each inter-PE communication channel
to a system bus (or multiple busses, if applicable)

* Routing
— Result:
Network model of the system

» Accurate representation of top-level system components
and their connectivity

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 8

(c) 2013 R. Doemer

Lecture 7



EECS222C: SoC Software Synthesis

Refinement-based System Design Flow

» Step 4: Communication Refinement
— Allocation and specification of communication protocol(s)
for each communication link (bus)
» Type of bus protocol for each link (if applicable)
» Bus protocol parameters (e.g. bit width, etc.)
« Synchronization policy and parameters
— Polling vs. interrupt
— Mapping of addresses
« System-wide address mapping to registers and memories
» Address translation in transducers (if needed)
— Result:
Bus-functional model of the system
« Transaction Level Model (TLM)
* Pin Accurate Model (PAM)
» Accurate timing for computation and communication

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 9

Refinement-based System Design Flow

» Step 5: Hardware Synthesis (for HW PESs)

Allocation of Register Transfer Level (RTL) components
* Number and type of functional units (e.g. adder, multiplier, ALU)
* Number and type of storage units (e.g. registers, register files)
* Number and type of interconnecting busses (drivers, multiplexers)
Scheduling
» Basic blocks assigned to super-states
« Individual operations assigned to states (clock cycles)
Binding
 Bind functional operations to functional units
« Bind variables to storage units
« Bind assignments/transfers to busses
Result:
Synthesizable HDL description (Verilog, VHDL, or SystemC)
» Clock-cycle accurate timing for each HW PE

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 10

(c) 2013 R. Doemer

Lecture 7



EECS222C: SoC Software Synthesis

Refinement-based System Design Flow

» Step 6: Software Generation (for SW PES)
— Generation of custom C code
» For selected target processor
» Specific to the entire system (incl. communication layers)
RTOS targeting
« Integration of selected target RTOS
Compilation to Instruction Set Architecture
« Instruction Set Simulation (ISS) integration
— Instruction-accurate or cycle-accurate
Assembly and Linking

Result:
Downloadable binary image

» Clock-cycle or instruction accurate timing for each SW PE

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 11

Example Case Study

» Design of a MP3 Decoder

— Floating-point based algorithm
* Somewhat different from ours
« Still very appropriate to compare

» System Design Case Study

— Tutorial on Embedded System Design
e Topic: System-level Modeling
e Speaker: Andreas Gerstlauer, CECS
e Conference: ASP-DAC 2007, Yokohama, Japan

» Lecture7-ASPDACO7-AG-MP3.pdf

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 12

(c) 2013 R. Doemer

Lecture 7



EECS222C: SoC Software Synthesis

Assignment 6

= Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
— Continue from the “Spec” model of the previous assignment
— Allocate an ARM_7TDMI processor for the entire decoder
* Choose default port configuration (i.e. 20000ps bus cycle)
* Choose 50 MHz (change it from default 100MHz)
— Estimate the execution time and calculate the frame delay
— Perform the following refinement steps
» Architecture Refinement
» Scheduling Refinement
» Network Refinement
» Communication Refinement
— Transaction-level model (TLM)
» Code generation: TLM_C model
— Pin-accurate model (PAM)
» Instruction Set Simulator (ISS) model
— Details: /7home/eecs222/EECS222C_S13/Assignment6.txt

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer

13

Assignment 6

= Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
— Fill the following table with the estimated/simulated frame delays

Refinement Step Model Decode time per frame
Profiling estimation Spec

Architecture Refinement Arm7Arch

Scheduling Refinement Arm7Sched

Network Refinement Arm7Net

Transaction-Level Refinement ~ Arm7TLM

C Code Generation Arm7TLM_C
Pin-Accurate Refinement Arm7PAM
Instruction Set Simulation Arm7ISS

— Submit as file: hw6/ARM7_Evaluation.pdf

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer

14

(c) 2013 R. Doemer

Lecture 7



