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Lecture 7: Overview

• Assignment 5
– Discussion

• Refinement-based System Design Flow
– Refinement steps

• Example Case Study
– Floating-point based MP3 decoder

• Assignment 6
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Assignment 5

1. Profile your MP3 Decoder model in SCE
– (continued from previous assignment)

– Load your MP3 project in SCE
 Project->Load “mp3.sce”

– Open your “Spec” design model and validate it
 Double-click on Spec.sir in the project window

 Validation->Compile

 Validation->Simulate

– Profile your MP3 decoder in SCE
 Validation->Profile
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Assignment 5

2. Analyze your Profiling Results
– Use the SCE bar charts to compare the computational complexity

of the behaviors in your MP3 decoder model
 In the hierarchy browser, select behaviors of interest

(use CTRL-LeftClick to select/deselect)
 RightClick->Graphs->Computation

– Identify the behavior instances
with the most computational load

• Goal is to find those components
that make good candidates
for hardware accelleration

– Short code

– Regular structure

– High computation

• Hint: There are 8 candidates
as shown in the chart on the right!

– Deliverable
• ComputationProfile.pdf

Example Computation Profile
(block names omitted)
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Refinement-based System Design Flow
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Refinement-based System Design Flow

• Step 1: Architecture Refinement
– Allocation of Processing Elements (PEs)

• Number and type of software processors

• Number and type of custom hardware units

• Number and type of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE

• Map each variable to a PE

– Result:
System architecture of concurrent PEs
with abstract communication via channels

 Estimated timing for computation specific to PE type
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Refinement-based System Design Flow

• Step 2: Scheduling Refinement
– For each sequential PE (e.g. software processor),

serialize the execution of behaviors to a single thread of control

– Option (a): Static scheduling
• For each set of concurrent behaviors,

determine a fixed order of execution

– Option (b): Dynamic scheduling by RTOS
• Choose scheduling policy,

i.e. round-robin or priority-based

• For each set of concurrent behaviors,
determine the scheduling priority

– Result:
System model with static or dynamic schedule
in each sequential PE

 Estimated total time of computation for each PE
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Refinement-based System Design Flow

• Step 3: Network Refinement
– Allocation of system busses

• Number and type of system busses

• Number and type of communication elements (CEs)
– Transducers: Routers or bridges

• System connectivity
– Masters and slaves

– Mapping of channels to busses and transducers
• Map each inter-PE communication channel

to a system bus (or multiple busses, if applicable)

• Routing

– Result:
Network model of the system

 Accurate representation of top-level system components
and their connectivity
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Refinement-based System Design Flow

• Step 4: Communication Refinement
– Allocation and specification of communication protocol(s)

for each communication link (bus)
• Type of bus protocol for each link (if applicable)

• Bus protocol parameters (e.g. bit width, etc.)

• Synchronization policy and parameters
– Polling vs. interrupt

– Mapping of addresses
• System-wide address mapping to registers and memories

• Address translation in transducers (if needed)

– Result:
Bus-functional model of the system

• Transaction Level Model (TLM)

• Pin Accurate Model (PAM)

 Accurate timing for computation and communication
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Refinement-based System Design Flow

• Step 5: Hardware Synthesis (for HW PEs)
– Allocation of Register Transfer Level (RTL) components

• Number and type of functional units (e.g. adder, multiplier, ALU)

• Number and type of storage units (e.g. registers, register files)

• Number and type of interconnecting busses (drivers, multiplexers)

– Scheduling
• Basic blocks assigned to super-states

• Individual operations assigned to states (clock cycles)

– Binding
• Bind functional operations to functional units

• Bind variables to storage units

• Bind assignments/transfers to busses

– Result:
Synthesizable HDL description (Verilog, VHDL, or SystemC)

 Clock-cycle accurate timing for each HW PE
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Refinement-based System Design Flow

• Step 6: Software Generation (for SW PEs)
– Generation of custom C code

• For selected target processor

• Specific to the entire system (incl. communication layers)

– RTOS targeting
• Integration of selected target RTOS

– Compilation to Instruction Set Architecture
• Instruction Set Simulation (ISS) integration

– Instruction-accurate or cycle-accurate

– Assembly and Linking

– Result:
Downloadable binary image

 Clock-cycle or instruction accurate timing for each SW PE

Example Case Study

• Design of a MP3 Decoder
– Floating-point based algorithm

• Somewhat different from ours

• Still very appropriate to compare

• System Design Case Study
– Tutorial on Embedded System Design

• Topic: System-level Modeling

• Speaker: Andreas Gerstlauer, CECS

• Conference: ASP-DAC 2007, Yokohama, Japan

Lecture7-ASPDAC07-AG-MP3.pdf
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Assignment 6

 Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
– Continue from the “Spec” model of the previous assignment

– Allocate an ARM_7TDMI processor for the entire decoder
• Choose default port configuration (i.e. 20000ps bus cycle)

• Choose 50 MHz (change it from default 100MHz)

– Estimate the execution time and calculate the frame delay

– Perform the following refinement steps
• Architecture Refinement

• Scheduling Refinement

• Network Refinement

• Communication Refinement

– Transaction-level model (TLM)

» Code generation: TLM_C model

– Pin-accurate model (PAM)

» Instruction Set Simulator (ISS) model

– Details: /home/eecs222/EECS222C_S13/Assignment6.txt
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Assignment 6

 Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
– Fill the following table with the estimated/simulated frame delays

– Submit as file: hw6/ARM7_Evaluation.pdf

Refinement Step Model Decode time per frame

Profiling estimation Spec

Architecture Refinement Arm7Arch

Scheduling Refinement Arm7Sched

Network Refinement Arm7Net

Transaction-Level Refinement Arm7TLM

C Code Generation Arm7TLM_C

Pin-Accurate Refinement Arm7PAM

Instruction Set Simulation Arm7ISS


