
EECS222C: SoC Software Synthesis Lecture 7

(c) 2013 R. Doemer 1

EECS 222C:
System-on-Chip Software Synthesis

Lecture 7

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 2

Lecture 7: Overview

• Assignment 5
– Discussion

• Refinement-based System Design Flow
– Refinement steps

• Example Case Study
– Floating-point based MP3 decoder

• Assignment 6



EECS222C: SoC Software Synthesis Lecture 7

(c) 2013 R. Doemer 2

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 3

Assignment 5

1. Profile your MP3 Decoder model in SCE
– (continued from previous assignment)

– Load your MP3 project in SCE
 Project->Load “mp3.sce”

– Open your “Spec” design model and validate it
 Double-click on Spec.sir in the project window

 Validation->Compile

 Validation->Simulate

– Profile your MP3 decoder in SCE
 Validation->Profile

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 4

Assignment 5

2. Analyze your Profiling Results
– Use the SCE bar charts to compare the computational complexity

of the behaviors in your MP3 decoder model
 In the hierarchy browser, select behaviors of interest

(use CTRL-LeftClick to select/deselect)
 RightClick->Graphs->Computation

– Identify the behavior instances
with the most computational load

• Goal is to find those components
that make good candidates
for hardware accelleration

– Short code

– Regular structure

– High computation

• Hint: There are 8 candidates
as shown in the chart on the right!

– Deliverable
• ComputationProfile.pdf

Example Computation Profile
(block names omitted)



EECS222C: SoC Software Synthesis Lecture 7

(c) 2013 R. Doemer 3

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 5

Refinement-based System Design Flow

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 6

Refinement-based System Design Flow

• Step 1: Architecture Refinement
– Allocation of Processing Elements (PEs)

• Number and type of software processors

• Number and type of custom hardware units

• Number and type of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE

• Map each variable to a PE

– Result:
System architecture of concurrent PEs
with abstract communication via channels

 Estimated timing for computation specific to PE type



EECS222C: SoC Software Synthesis Lecture 7

(c) 2013 R. Doemer 4

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 7

Refinement-based System Design Flow

• Step 2: Scheduling Refinement
– For each sequential PE (e.g. software processor),

serialize the execution of behaviors to a single thread of control

– Option (a): Static scheduling
• For each set of concurrent behaviors,

determine a fixed order of execution

– Option (b): Dynamic scheduling by RTOS
• Choose scheduling policy,

i.e. round-robin or priority-based

• For each set of concurrent behaviors,
determine the scheduling priority

– Result:
System model with static or dynamic schedule
in each sequential PE

 Estimated total time of computation for each PE

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 8

Refinement-based System Design Flow

• Step 3: Network Refinement
– Allocation of system busses

• Number and type of system busses

• Number and type of communication elements (CEs)
– Transducers: Routers or bridges

• System connectivity
– Masters and slaves

– Mapping of channels to busses and transducers
• Map each inter-PE communication channel

to a system bus (or multiple busses, if applicable)

• Routing

– Result:
Network model of the system

 Accurate representation of top-level system components
and their connectivity



EECS222C: SoC Software Synthesis Lecture 7

(c) 2013 R. Doemer 5

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 9

Refinement-based System Design Flow

• Step 4: Communication Refinement
– Allocation and specification of communication protocol(s)

for each communication link (bus)
• Type of bus protocol for each link (if applicable)

• Bus protocol parameters (e.g. bit width, etc.)

• Synchronization policy and parameters
– Polling vs. interrupt

– Mapping of addresses
• System-wide address mapping to registers and memories

• Address translation in transducers (if needed)

– Result:
Bus-functional model of the system

• Transaction Level Model (TLM)

• Pin Accurate Model (PAM)

 Accurate timing for computation and communication

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 10

Refinement-based System Design Flow

• Step 5: Hardware Synthesis (for HW PEs)
– Allocation of Register Transfer Level (RTL) components

• Number and type of functional units (e.g. adder, multiplier, ALU)

• Number and type of storage units (e.g. registers, register files)

• Number and type of interconnecting busses (drivers, multiplexers)

– Scheduling
• Basic blocks assigned to super-states

• Individual operations assigned to states (clock cycles)

– Binding
• Bind functional operations to functional units

• Bind variables to storage units

• Bind assignments/transfers to busses

– Result:
Synthesizable HDL description (Verilog, VHDL, or SystemC)

 Clock-cycle accurate timing for each HW PE



EECS222C: SoC Software Synthesis Lecture 7

(c) 2013 R. Doemer 6

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 11

Refinement-based System Design Flow

• Step 6: Software Generation (for SW PEs)
– Generation of custom C code

• For selected target processor

• Specific to the entire system (incl. communication layers)

– RTOS targeting
• Integration of selected target RTOS

– Compilation to Instruction Set Architecture
• Instruction Set Simulation (ISS) integration

– Instruction-accurate or cycle-accurate

– Assembly and Linking

– Result:
Downloadable binary image

 Clock-cycle or instruction accurate timing for each SW PE

Example Case Study

• Design of a MP3 Decoder
– Floating-point based algorithm

• Somewhat different from ours

• Still very appropriate to compare

• System Design Case Study
– Tutorial on Embedded System Design

• Topic: System-level Modeling

• Speaker: Andreas Gerstlauer, CECS

• Conference: ASP-DAC 2007, Yokohama, Japan

Lecture7-ASPDAC07-AG-MP3.pdf

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 12



EECS222C: SoC Software Synthesis Lecture 7

(c) 2013 R. Doemer 7

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 13

Assignment 6

 Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
– Continue from the “Spec” model of the previous assignment

– Allocate an ARM_7TDMI processor for the entire decoder
• Choose default port configuration (i.e. 20000ps bus cycle)

• Choose 50 MHz (change it from default 100MHz)

– Estimate the execution time and calculate the frame delay

– Perform the following refinement steps
• Architecture Refinement

• Scheduling Refinement

• Network Refinement

• Communication Refinement

– Transaction-level model (TLM)

» Code generation: TLM_C model

– Pin-accurate model (PAM)

» Instruction Set Simulator (ISS) model

– Details: /home/eecs222/EECS222C_S13/Assignment6.txt

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2013 R. Doemer 14

Assignment 6

 Evaluate ARM7TDMI as a potential Processor
for a SW-only Implementation of the MP3 Decoder
– Fill the following table with the estimated/simulated frame delays

– Submit as file: hw6/ARM7_Evaluation.pdf

Refinement Step Model Decode time per frame

Profiling estimation Spec

Architecture Refinement Arm7Arch

Scheduling Refinement Arm7Sched

Network Refinement Arm7Net

Transaction-Level Refinement Arm7TLM

C Code Generation Arm7TLM_C

Pin-Accurate Refinement Arm7PAM

Instruction Set Simulation Arm7ISS


