| |
tlJ technische universitat ﬁ fakultat fur informatik
dortmund informatik 12

Classical scheduling
algorithms
for periodic systems 15

10 6101;11?)%(‘ 0

f‘]z{

Peter Marwedel
TU Dortmund, Informatik 12
Germany

(2010% 12 A 15 A) Mcrousttcopyat restrotons appi:
Subset of slides selected for EECS 222C.

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Periodic and aperiodic tasks

real-time scheduling

hard d daadlmes soll deadlines

f = =
/\-H“‘mht

SN AN N AN

static dynamic static dynamic static dynamic static dynamic

Def.: Tasks which must be executed once every p units of
time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation
between the times at which they request the processor.

technische universitat = fakultat fur © p. marwedel,
dortmund informatik informatik 12, 2010

Periodic scheduling

ESE S S S SR SN SR SR SN S

(LN S S S S S S S

Each execution instance of a task is called a job.

Notion of optimality for aperiodic scheduling does not make
sense for periodic scheduling.

For periodic scheduling, the best that we can do is to design
an algorithm which will always find a schedule if one exists.
& A scheduler is defined to be optimal iff it will find a
schedule if one exists.

technische universitat = fakultat fur © p. marwedel,
dortmund informatik informatik 12, 2010

Periodic scheduling
- Scheduling with no precedence constraints -

Let {T; } be a set of tasks. Let:
p; be the period of task T,
c; be the execution time of T,
d, be the deadline interval, that is,
the time between T, becoming available
and the time until which T; has to finish execution.
I, be the laxity or slack, defined as |, = d; - ¢
f, be the finishing time.

4 Pi
Availability of Task i - - - = d;

|
|

technische universitat = fakultat fur © p. marwedel,
dortmund informatik informatik 12, 2010

Average utilization, a very important
characterization of scheduling problems:

Average utilization:

'Ll:

M-

&
oo

Necessary condition for schedulability U <m
(with m=number of processors):

technische universitat = fakultat fur © p. marwedel,
dortmund informatik informatik 12, 2010

Independent tasks:
Rate monotonic (RM) scheduling

Most well-known technique for scheduling independent
periodic tasks [Liu, 1973].
Assumptions:

All tasks that have hard deadlines are periodic.

All tasks are independent.

d, =p;, for all tasks.

c; is constant and is known for all tasks.

The time required for context switching is negligible.

For a single processor and for n tasks, the following
equation holds for the average utilization p:

,u:Z%Sn(Z”“—l)]
i1 P

, ¢ technische universitat ® fakultat fur © p. marwedel,
dortmund informatik informatik 12, 2010

Rate monotonic (RM) scheduling
- The policy -

RM policy: The priority of a task is a monotonically
decreasing function of its period.

At any time, a highest priority task among all those that are
ready for execution is allocated.

Theorem: If all RM assumptions are met,
schedulability is guaranteed.

technische universitat = fakultat fur © p. marwedel, 7
dortmund informatik informatik 12, 2010 - -

Maximum utilization for guaranteed schedulability

Maximum utilization as a function of the number of tasks:

1

n(@n-1)
X o o~
- 9 8 B 2 ¥ o <
n i ==} =+ M o
G Un] s 5 5 8 R K R
,u:Z—Sn(Z -1) 0.8 © © © o
=1 Fi 0.6
lim(n(2¥" 1) = In(2) 0.4
nN—o0
0.2+
1 2 3 4 5 6 7 8 n
technische universitét = fakultét fir © p. marwedel, . 8-

dortmund informatik informatik 12, 2010

Example of RM-generated schedule

o
-
[N
w —
=N
o
o
~
o —
©
~

T, preempts T, and T,.
T, and T, do not preempt each other.

technische universitat = fakultat fur © p. marwedel,
L dortmund informatik informatik 12, 2010

Case of failing RM scheduling

Task 1: period 5, execution time 2
Task 2: period 7, execution time 4
pu=2/5+4/7=34/35 ~ 0.97

2(212-1) ~ 0.828

| | | | |
1+ 1 1 [1 []

<A =11 | L 1
T /T |

| ||
w'#e 18 20 22 24 26 28 30 32
Missing computations
scheduled in the next period

technische universitat = fakultat fur © p. marwedel, . R
L dortmund informatik informatik 12, 2010 IeviRTS animation

- 10 -

Properties of RM scheduling

RM scheduling is based on static priorities. This allows
RM scheduling to be used in an OS with static priorities,
such as Windows NT.

No idle capacity is needed if Vi: p;.,=F p;:

i.e. if the period of each task is a multiple of the period
of the next higher priority task, schedulability is then
also guaranteed if p < 1.

A huge number of variations of RM scheduling exists.

In the context of RM scheduling, many formal proofs

exist.
ey technische universitat * fakultat fur © p. marwedel, 1
' dortmund informatik informatik 12, 2010 - -

EDF

EDF can also be applied to periodic scheduling.

EDF optimal for every hyper-period
(= least common multiple of all periods)

Optimal for periodic scheduling

EDF must be able to schedule the example in which RMS
failed.

sy technische universitat * fakultat fur © p. marwedel, 12
' dortmund informatik informatik 12, 2010 - -

Comparison EDF/RMS

PR S B S N A N S N A

VO SN o NN s N i N NN s NN i

[T 17 7 1T T 1T 77
0 2 4 6 8 10 12 16 18 200 22 24

VN S N A o B S B S N 2 — .

I
14

| 8 s LN PR LN BN L SRR R
o 2 4 6 8 0 12 14 16 18 20 22 24 ¢

r, 1 4 [4 —— 4

T, not preempted, due to its earlier deadline.

«=y technische universitét * fakultat fur © p. marwedel,

) dortmund informatik informatik 12,2010 EPF-animation - 13-

EDF: Properties

EDF requires dynamic priorities

& EDF cannot be used with an operating system just
providing static priorities.

However, a recent paper (by Margull and Slomka) at DATE
2008 demonstrates how an OS with static priorities can be

extended with a plug-in providing EDF scheduling

(key idea: delay tasks becoming ready if they shouldn’t be

executed under EDF scheduling.

‘wy technische universitét = fakultat fur © p. marwedel, 14
' dortmund informatik informatik 12, 2010 - -

Comparison RMS/EDF

RMS EDF
Priorities Static Dynamic
Works with OS with fixed |Yes No*
priorities
Uses full computational No, Yes
power of processor just up till p=n(21"-1)
Possible to exploit full No Yes
computational power of
processor without
provisioning for slack

* Unless the plug-in by Slomka et al. is added.

technische universitat = fakultat fur © p. marwedel, 15
' dortmund informatik informatik 12, 2010 - -

Sporadic tasks

If sporadic tasks were connected to interrupts, the execution
time of other tasks would become very unpredictable.

< Introduction of a sporadic task server,
periodically checking for ready sporadic tasks;

& Sporadic tasks are essentially turned into periodic tasks.

technische universitét = fakultét fir © p. marwedel, 16
' dortmund informatik informatik 12, 2010 - -

Dependent tasks

The problem of deciding whether or not a schedule exists
for a set of dependent tasks and a given deadline
is NP-complete in general [Garey/Johnson].

Strategies:
1. Add resources, so that scheduling becomes easier

2. Split problem into static and dynamic part so that only a
minimum of decisions need to be taken at run-time.

3. Use scheduling algorithms from high-level synthesis

technische universitat = fakultat fur © p. marwedel, 17
dortmund informatik informatik 12, 2010 - -

Summary

Periodic scheduling
Rate monotonic scheduling
EDF
Dependent and sporadic tasks (briefly)

technische universitat * fakultat fur © p. marwedel, 18
dortmund informatik informatik 12, 2010 - -

