
EECS22L: Software Engineering Project in C Lecture 2

(c) 2013 R. Doemer 1

EECS 22L: Software Engineering Project
in C Language

Lecture 2

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 2

Lecture 2: Overview

• Software Development Process
– Application specification

– Software architecture design and specification
• Software layers and modules

– Implementation, testing, and debugging

– Software release

• Source Code Management
– Collaborative software development

– Version trees

– Example: Concurrent Versions System (CVS)

EECS22L: Software Engineering Project in C Lecture 2

(c) 2013 R. Doemer 2

Software Development Process

• EECS 22L Software Development Process
1. Application specification

• User’s perspective (aka. client or customer)

• Documentation

2. Software architecture design and specification
• Developer’s perspective

• Documentation

3. Implementation, testing, and debugging
• Unit testing

• System testing

4. Software release
• Binary program and documentation

• Source code and documentation

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 3

Software Development Process

1. Application Specification
– Goal: Specify the user experience!

• What does the user (aka. customer, client) want?

• What does he need to provide? What does he get?

• What does the software do? What features does it have?

– Deliverable: Application Specification Document
• Input data including options and parameters

– What? In which format? In which order? From which device? …

• Processing
– What? (not how!) What happens? What is presented?

• Output
– What? In which format? In which order? To which device? …

 Some features may be intentionally left “unspecified”

 Specification can be the starting point of the final
documentation!

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 4

EECS22L: Software Engineering Project in C Lecture 2

(c) 2013 R. Doemer 3

Software Development Process

2. Software Architecture Design and Specification
– Goal: Specify the developer’s perspective!

• What modules is the program composed of? Dependencies?

• How do the modules interact? What functions and parameters?

• What data structures are used? What algorithms?

– Deliverable: Software Specification Document
Detailed plan to develop and implement the software!

• Software layers and modules
– Software architecture with layers of modules and libraries

– Application Procedural Interface (API) of modules (tentative headers!)

• Data structures and algorithms
– How is data organized?

– How is data processed?

• Implementation plan
– Project timeline

– Tasks and team member assignments

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 5

Chess (main module)

X11 Graphics Library
(libSDL)

Software Development Process

• Example: Software Layers and Modules
– Stack of all components in the software architecture

• Hardware infrastructure

• Operating system (OS) infrastructure

• OS and third-party libraries

• Application modules

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 6

PC Hardware (i386 server)

Linux OS (RHEL-3-i686)

Std. C (libc)Math (libm)

Strategy (AI) User Interface (GUI)

Rules (chess)

Hardware

Software

EECS22L: Software Engineering Project in C Lecture 2

(c) 2013 R. Doemer 4

Software Development Process

3. Implementation, Testing, and Debugging (part 1)
– Goal: Build the software!

• Implement the modules and integrate them

• Unit testing

• System testing

– Deliverable 1: Alpha Version of Software Package
Demonstrate feasibility to the user!

• Software program
– Binary executable program

– Debugging support enabled (console output, flow and limitations)

• Initial data set (if applicable)
– Initial set of input data demonstrating alpha status

• Documentation
– Prerelease of user manual

– Release notes with known limitations

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 7

Software Development Process

3. Implementation, Testing, and Debugging (part 2)
– Goal: Build the software!

• Implement the modules and integrate them

• Unit testing

• System testing

– Deliverable 2: Beta Version of Software Package
 Preview software to the user!

• Software program
– Binary executable program

– Assertions enabled (locate crashes!)

• Testing data set (!)
– Input data and automated test scripts

• Documentation
– User manual

– Release notes with known limitations

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 8

EECS22L: Software Engineering Project in C Lecture 2

(c) 2013 R. Doemer 5

Software Development Process

4. Software Release (part 1)
– Goal: Release the software to the user!

• Complete implementation

• Complete documentation

• Complete testing

– Deliverable 1: Binary program and documentation
 Everything needed for a user (client, customer)

to install, learn, and use the software!

• Software program
– Binary executable program (no debugging support, optimized)

• Tutorial data set (if applicable)
– Initial set of input data demonstrating tool usage to the user

• Documentation
– User manual

– Release and installation notes

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 9

Software Development Process

4. Software Release (part 2)
– Goal: Release the software to the user!

• Complete implementation

• Complete documentation

• Complete testing

– Deliverable 2: Source code and documentation
 Everything needed for a developer

to install, maintain, and upgrade the software!

• Software source code
– Header and module files

– Development setup (Makefile, scripts, etc.)

• Testing data set
– Input data and automated scripts for regression tests

• Documentation
– Software architecture manual

– Release and installation notes

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 10

EECS22L: Software Engineering Project in C Lecture 2

(c) 2013 R. Doemer 6

Source Code Management

• Source Code Management
– Also known as Version Control

– or Configuration Management

• Purpose and Goals
– Team-based, concurrent software development

– Access control

– Archive for software development and versions

– Common data base with records of
• Source code, documentation, and other build files

• Versions and revisions

• Branches and merges

• History and log information

– Efficient storage space usage with remote access

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 11

Source Code Management

• Collaborative Software Development
 Shared but dependent source code files!

– Two options:
• Single modifications with file locking

– Ensures that no two developers modify the same file

– But has drawbacks:

» Locking may be forgotten

» Locking may lead to deadlocks (!)

» Locally modified files may lead to mismatches with locked
ones…

• Multiple modifications with merging
– Multiple developers work on the same files at the same time

» Multiple modifications are allowed, different versions exist!

– Files are merged when inserted into the common code base
(“merge and commit to the repository”)

 Merging can often be performed automatically!

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 12

EECS22L: Software Engineering Project in C Lecture 2

(c) 2013 R. Doemer 7

Source Code Management

• Version Trees
– Software products consist of versions

• Release versions

• Development revisions (internal)

– Concurrent feature development requires
multiple parallel branches

• Separate common and feature files
 Only a few of the files actually differ

– Version trees consist of
• Root (e.g. revision 1.0) and main trunk

• Branches for features (1.0.1, 1.0.2, …)

– May be active or dead

– May be merged into other branches

• Minor development revisions (e.g. 1.1, 1.2, …)

• Major / release versions (e.g. 2.0, 3.0)

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 13

• Example: Concurrent Versions System (CVS)

DeveloperN@hostM, …

Developer1@host1: Team@server:

Source Code Management

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 14

Repository
$CVSROOT

Check out
cvs checkout

Update
cvs update

Create
cvs import

Commit
cvs commit

Compare
cvs diff

Analyze
cvs status

cvs history
cvs log

Modify
vi Initial Files

Developer
Working
Copy

Add, remove
cvs add

cvs remove

