EECS22L: Software Engineering Project in C

EECS 22L: Software Engineering Project
in C Language
Lecture 2

Rainer D6mer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 2: Overview

» Software Development Process
— Application specification
— Software architecture design and specification
« Software layers and modules
— Implementation, testing, and debugging
— Software release
» Source Code Management
— Collaborative software development
— Version trees
— Example: Concurrent Versions System (CVS)

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 2

EECS22L: Software Engineering Project in C

Software Development Process

» EECS 22L Software Development Process

1. Application specification
» User’s perspective (aka. client or customer)
» Documentation
2. Software architecture design and specification
« Developer’s perspective
» Documentation
3. Implementation, testing, and debugging
¢ Unit testing
« System testing
4. Software release
 Binary program and documentation
» Source code and documentation

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer

Software Development Process

1. Application Specification
— Goal: Specify the user experience!
* What does the user (aka. customer, client) want?
« What does he need to provide? What does he get?
* What does the software do? What features does it have?
— Deliverable: Application Specification Document
« Input data including options and parameters

— What? In which format? In which order? From which device? ...

« Processing
— What? (not how!) What happens? What is presented?
¢ Output
— What? In which format? In which order? To which device? ...
» Some features may be intentionally left “unspecified”
» Specification can be the starting point of the final
documentation!

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 2

EECS22L: Software Engineering Project in C

Software Development Process

2. Software Architecture Design and Specification

— Goal: Specify the developer’s perspective!
* What modules is the program composed of? Dependencies?
* How do the modules interact? What functions and parameters?
« What data structures are used? What algorithms?
— Deliverable: Software Specification Document
» Detailed plan to develop and implement the software!
» Software layers and modules
— Software architecture with layers of modules and libraries
— Application Procedural Interface (API) of modules (tentative headers!)
» Data structures and algorithms
— How is data organized?
— How is data processed?
* Implementation plan
— Project timeline
— Tasks and team member assignments
EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 5

Software Development Process

» Example: Software Layers and Modules
— Stack of all components in the software architecture
» Hardware infrastructure
» Operating system (OS) infrastructure
* OS and third-party libraries
« Application modules

Chess (main module)

Strategy (Al) User Interface (GUI)

Software Rules (chess) X11 Graphics Library
(libSDL)

Math (libm) | Std. C (libc)

Hardware

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 6

(c) 2013 R. Doemer

Lecture 2

EECS22L: Software Engineering Project in C

3.

Software Development Process

Implementation, Testing, and Debugging (part 1)
— Goal: Build the software!
« Implement the modules and integrate them
¢ Unit testing
« System testing
— Deliverable 1: Alpha Version of Software Package
» Demonstrate feasibility to the user!
» Software program
— Binary executable program
— Debugging support enabled (console output, flow and limitations)
« Initial data set (if applicable)
— Initial set of input data demonstrating alpha status
« Documentation
— Prerelease of user manual
— Release notes with known limitations

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer

3.

Software Development Process

Implementation, Testing, and Debugging (part 2)
— Goal: Build the software!
« Implement the modules and integrate them
« Unit testing
« System testing
— Deliverable 2: Beta Version of Software Package
» Preview software to the user!
« Software program
— Binary executable program
— Assertions enabled (locate crashes!)
» Testing data set (!)
— Input data and automated test scripts
« Documentation
— User manual
— Release notes with known limitations

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 2

EECS22L: Software Engineering Project in C

Software Development Process

4. Software Release (part 1)
— Goal: Release the software to the user!
« Complete implementation
« Complete documentation
« Complete testing
— Deliverable 1: Binary program and documentation
» Everything needed for a user (client, customer)
to install, learn, and use the software!
» Software program
— Binary executable program (no debugging support, optimized)
« Tutorial data set (if applicable)
— Initial set of input data demonstrating tool usage to the user
« Documentation
— User manual
— Release and installation notes

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 9

Software Development Process

4. Software Release (part 2)
— Goal: Release the software to the user!
e Complete implementation
e Complete documentation
« Complete testing
— Deliverable 2: Source code and documentation
» Everything needed for a developer
to install, maintain, and upgrade the software!
» Software source code
— Header and module files
— Development setup (Makefile, scripts, etc.)
e Testing data set
— Input data and automated scripts for regression tests
« Documentation
— Software architecture manual
— Release and installation notes
EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 10

(c) 2013 R. Doemer

Lecture 2

EECS22L: Software Engineering Project in C Lecture 2

Source Code Management

* Source Code Management
— Also known as Version Control
— or Configuration Management

* Purpose and Goals
Team-based, concurrent software development
Access control
Archive for software development and versions
Common data base with records of
* Source code, documentation, and other build files
« Versions and revisions
* Branches and merges
 History and log information
Efficient storage space usage with remote access

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 11

Source Code Management

» Collaborative Software Development
» Shared but dependent source code files!

— Two options:

 Single modifications with file locking
— Ensures that no two developers modify the same file
— But has drawbacks:
» Locking may be forgotten
» Locking may lead to deadlocks (!)
» Locally modified files may lead to mismatches with locked
ones...
< Multiple modifications with merging
— Multiple developers work on the same files at the same time
» Multiple modifications are allowed, different versions exist!

— Files are merged when inserted into the common code base
(“merge and commit to the repository”)

» Merging can often be performed automatically!

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2013 R. Doemer 12

(c) 2013 R. Doemer 6

EECS22L: Software Engineering Project in C

Source Code Management

» Version Trees
— Software products consist of versions

* Release versions
» Development revisions (internal)

— Concurrent feature development requires

multiple parallel branches
» Separate common and feature files
» Only a few of the files actually differ

— Version trees consist of
* Root (e.g. revision 1.0) and main trunk
» Branches for features (1.0.1, 1.0.2, ...)

— May be active or dead
— May be merged into other branches

* Minor development revisions (e.g. 1.1, 1.2, ...)

* Major / release versions (e.g. 2.0, 3.0)

EECS22L: Software Engineering Project in C, Lecture 2

(c) 2013 R. Doemer 13

Source Code Management

» Example: Concurrent Versions System (CVS)

Developerl@hostl: Team@server:
Modify Check out M
cvs checkout Initial Files

Developer
Working cvs update

Copy

Compare

«“ Update b
— —H

cvs diff

Commit

Create
cvs import

cvs commit

Analyze
cvs status Add, remove

cvs history cvs add

cvs log CVS remove

DeveloperN@hostM, ...

EECS22L: Software Engineering Project in C, Lecture 2

(c) 2013 R. Doemer

14

(c) 2013 R. Doemer

Lecture 2

