EECS22L: Software Engineering Project in C

EECS 22L: Software Engineering Project
in C Language
Lecture 3

Rainer D6mer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

— Overview

— Starting a project
— Checking out a project

— Adding new files

— Advanced features

EECS22L: Software Engineering Project in C, Lecture 3

Lecture 3: Overview
» Version Control with CVS

— Creating a CVS repository

— Checking in updated files

— Concurrent updating and merging

(c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C Lecture 3

Version Control with CVS

» Overview: Concurrent Versions System (CVS)

Developerl@hostl: Team@server:
Modify Checkout
Vi cvs_checkout Initial Files

Update Create
Developer cvs import
Working cvs update | P
Copy E ™
Compare
cvs diff
Commit

Analyze

cvs status Add, remove

cvs history cvs add
cvs log CVS remove

[

cvs commit

[

DeveloperN@hostM, ...

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 3

Version Control with CVS

» Step 1: Creating a CVS repository
— Repository can host multiple projects (aka. CVS modules)
* One repository per team
— Repository should be located at central position
* On server, team-accessible
— Example: Team eecs22 initializes its CVS repository

* Repository location: ~eecs22/cvsroot on server ladera

doemer@ladera:1 > ssh eecs22@ladera
eecs22@ladera®s password:

Last login: Mon Jan 14 21:28:15 2013 from ladera.eecs.uci.edu
eecs22@ladera:1 > Is cvsroot

Is: cvsroot: No such file or directory
eecs22@ladera:2 > cvs -d ~/cvsroot init
eecs22@ladera:3 > Is cvsroot

CVSROOT/

eecs22@ladera:4 > exit

logout

Connection to ladera closed.
doemer@ladera:2 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 4

(c) 2013 R. Doemer 2

EECS22L: Software Engineering Project in C

Version Control with CVS

Step 2: Starting a project in the repository

— Example: Team prepares initial file tree and imports the project
« Environment variable CVSROOT points to the repository location
« The Makefile and the src and bin directories are imported

eecs22@ladera:1 > mkdir project

eecs22@ladera:2 > mkdir project/chess

eecs22@ladera:3 > cd project/chess

eecs22@ladera:4 > mkdir init

eecs22@ladera:5 > cd init

eecs22@ladera:6 > vi Makefile

eecs22@ladera:7 > mkdir src bin

eecs22@ladera:8 > setenv CVSROOT ~/cvsroot

eecs22@ladera:9 > cvs import -m "Created initial file tree*

project/chess doemer start
N project/chess/Makefile
cvs import: Importing Zusers/eecs22/cvsroot/project/chess/src
cvs import: Importing Zusers/eecs22/cvsroot/project/chess/bin

No conflicts created by this import

eecs22@ladera:10 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 5

Version Control with CVS

Step 2: Starting a project in the repository
— Example (cont'd): Team inspects the repository
« Repository now contains project/chess/ sub-directory
« Each imported file/directory has a corresponding repository entry
» Each repository file contains all revisions of the corresponding file
» Only revision differences are appended (file contents are “diffs”)

eecs22@ladera:10 > Is -la ~/cvsroot/

total 4

drwxrwxr-x 4 eecs22 mysql 512 Jan 14 22:06 ./
drwxr-xr-x 34 eecs22 mysql 1024 Jan 14 22:04 ../
drwxrwxr-x 3 eecs22 mysql 1024 Jan 14 22:04 CVSROOT/
drwxrwxr-x 3 eecs22 mysql 512 Jan 14 22:06 project/
eecs22@ladera:11 > Is -la ~/cvsroot/project/chess/
total 6

drwxrwxr-x 5 eecs22 mysqgl 512 Jan 14 22:06 ./
drwxrwxr-x 3 eecs22 mysqgl 512 Jan 14 22:06 ../
drwxrwxr-x 2 eecs22 mysqgl 512 Jan 14 22:06 bin/
-r--r--r-- 1 eecs22 mysql 405 Jan 14 22:06 Makefile,v
drwxrwxr-x 2 eecs22 mysqgl 512 Jan 14 22:06 src/
eecs22@ladera:12 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 6

(c) 2013 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Version Control with CVS

Step 3: Checking out a project from the repository

— Example: Team creates a central project check-out

« Directory chkout is created next to the initial init directory

« After the chkout contents are confirmed OK and complete,
the initial init directory tree should be deleted (not used anymore)

eecs22@ladera:12 > cd ~/project/chess
eecs22@ladera:13 > cvs checkout -d chkout project/chess
cvs checkout: Updating chkout

U chkout/Makefile

cvs checkout: Updating chkout/bin

cvs checkout: Updating chkout/src
eecs22@ladera:14 > Is

chkout/ init/

eecs22@ladera:15 > cd chkout/
eecs22@ladera:16 > Is

bin/ CVS/ Makefile src/
eecs22@ladera:17 > cd ..
eecs22@ladera:18 > rm -rf init
eecs22@ladera:19 > Is

chkout/

eecs22@ladera:20 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer

Version Control with CVS

» Step 4: Checking out a working copy of a project

— Example: Developer prepares a local project checkout

« Directory project/chess is created to host local checkouts

— Preparation: Set CVS environment variables

= CVSROOT access method, login, and server name,
plus absolute path to the repository
= CVS_RSH protocol to use to connect to the server

= CVSUMASK mask for file permissions suitable for teamwork

doemer@ladera:1 > mkdir project
doemer@ladera:2 > mkdir project/chess
doemer@ladera:3 > cd project/chess
doemer@ladera:4 > echo ~eecs22
/users/eecs22

doemer@ladera:5 > setenv CVSROOT

ext:eecs22@ladera.eecs.uci.edu:/users/eecs22/cvsroot

doemer@ladera:6 > setenv CVS _RSH ssh
doemer@ladera:7 > setenv CVSUMASK 007
doemer@ladera:8 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C Lecture 3

Version Control with CVS

» Step 4: Checking out a working copy of a project
— Example (cont'd): Developer checks out a local project copy
» Project project/chess is checked out
« Checkout is placed into new directory named chkout
« Created files are updated to latest versions (on main trunk)
« Developer can then start working in chkout directory...

doemer@ladera:8 > cvs checkout -d chkout project/chess
eecs22@ladera.eecs.uci.edu”s password:
cvs checkout: Updating chkout

U chkout/Makefile

cvs checkout: Updating chkout/bin

cvs checkout: Updating chkout/src
doemer@ladera:9 > Is

chkout/

doemer@ladera:10 > cd chkout
doemer@ladera:11 > Is

bin/ CVS/ Makefile src/
doemer@ladera:12 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 9

Version Control with CVS

» Step 5: Checking in updated files from a working copy
— Example (cont’'d): Developer works in local project checkout
« Developer modifies/extends the MakeFile
« Developer commits the updated Make¥Fi e to the repository
— A message describing the change should be attached
* New revision 1.2 of Makefi le is checked into the repository
— New MakeTi le becomes available to other team members

doemer@ladera:12 > vi Makefile

doemer@ladera:13 > cvs commit -m "Added default rules"”
cvs commit: Examining .

cvs commit: Examining bin

cvs commit: Examining src

eecs22@ladera.eecs.uci.edu”s password:

Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile
new revision: 1.2; previous revision: 1.1

done

doemer@ladera:14 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 10

(c) 2013 R. Doemer 5

EECS22L: Software Engineering Project in C

Version Control with CVS

Step 6: Adding new files to the repository
— Example (cont'd): Developer works in local project checkout

» Developer creates a new source file Main.c (in directory src)

« Developer adds and commits the new file to the repository
» (Deleting unused files works the same way with remove)

doemer@ladera:14 > vi src/Main.c

doemer@ladera:15 > cvs add src/Main.c
eecs22@ladera.eecs.uci.edu”s password:

cvs add: scheduling file “src/Main.c® for addition

cvs add: use "cvs commit®™ to add this file permanently
doemer@ladera:16 > cvs commit -m "Added Main.c with menu* src
cvs commit: Examining src

eecs22@ladera.eecs.uci.edu”s password:

RCS file: /users/eecs22/cvsroot/project/chess/src/Main.c,v

done

Checking in src/Main.c;
/users/eecs22/cvsroot/project/chess/src/Main.c,v <-- Main.c
initial revision: 1.1

Done

doemer@ladera:17 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 11

Version Control with CVS

Step 7: Concurrent updating and merging
— Example: Developer 1 works in local project checkout

» Developer 1 checks for any updates in the repository
 If no updates are available, status of local files is shown

doemer@ladera:1 > cd project/chess/chkout/
doemer@ladera:2 > Is

bin/

CVS/ Makefile src/

doemer@ladera:3 > cvs update
eecs22@ladera.eecs.uci.edu”s password:
cvs update: Updating .

cvs update: Updating bin

cvs update: Updating src
doemer@ladera:4 > vi Makefile
doemer@ladera:5 > cvs update
eecs22@ladera.eecs.uci.edu”s password:
cvs update: Updating .

M Makefile

cvs update: Updating bin

cvs update: Updating src
doemer@ladera:6 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 12

(c) 2013 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Version Control with CVS

Step 7: Concurrent updating and merging

— Example (cont'd): Developer 1 works in local project checkout

« Developer 1 can compare (diff) her/his local files anytime
against the latest revision in the repository

« Comparison against any other revision is also possible
(using the —r revision option)

doemer@ladera:6 > cvs diff Makefile
eecs22@ladera.eecs.uci.edu”s password:
Index: Makefile

RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.2

diff -r1.2 Makefile

2a3,6

>

> # module 1 compilation rule

> modulel.o: modulel.h modulel.c

> gcc modulel.c -o module.o

doemer@ladera:7 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer

13

Version Control with CVS

Step 7: Concurrent updating and merging

— Example (cont’'d): Developer 2 works in parallel in team account

< Developer 2 modifies/extends the Makefile

« Developer 2 explicitly checks the status of the MakeFile
and finds that a newer version is available in the repository

eecs22@ladera:1 > cd project/chess/chkout/
eecs22@ladera:2 > Is

bin/ CVS/ Makefile src/

eecs22@ladera:3 > vi Makefile
eecs22@ladera:4 > cvs status Makefile

File: Makefile Status: Needs Merge

Working revision: 1.1.1.1 Tue Jan 15 06:06:31 2013
Repository revision: 1.2
/users/eecs22/cvsroot/project/chess/Makefile,v

Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

eecs22@ladera:5 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer

14

(c) 2013 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Version Control with CVS

» Step 7: Concurrent updating and merging

— Example (cont'd): Developer 2 works in parallel in team account
« Developer 2 modifies/extends the Makefile
» Developer 2 explicitly checks the status of the MakeFfile
» Developer 2 updates his local checkout, i.e. the MakeFfile
» Two sets of changes in Makefi le are merged (here with conflicts)

eecs22@ladera:5 > cvs update

cvs update: Updating -

RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.1.1.1

retrieving revision 1.2

Merging differences between 1.1.1.1 and 1.2 into Makefile
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in Makefile

C Makefile

cvs update: Updating bin

cvs update: Updating src

U src/Main.c

eecs22@ladera:6 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 15

Version Control with CVS

» Step 7: Concurrent updating and merging
— Example (cont’'d): Developer 2 works in parallel in team account
< Developer 2 modifies/extends the Makefile
« Developer 2 explicitly checks the status of the MakeFile
« Developer 2 updates his local checkout, i.e. the MakeFile
« Two sets of changes in MakeTi le are merged (here with conflicts)

« Developer 2 resolves the conflicts (an example is shown later)
and commits the merged revision back into the repository

eecs22@ladera:6 > vi Makefile

eecs22@ladera:7 > cvs commit -m "Added rule and resolved conflicts"
cvs commit: Examining .

cvs commit: Examining bin

cvs commit: Examining src

Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile

new revision: 1.3; previous revision: 1.2

done

eecs22@ladera:8 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 16

(c) 2013 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C Lecture 3

Version Control with CVS

» Step 7: Concurrent updating and merging
— Example (cont'd): Developer 1 works in local project checkout

e Then, after parallel edits in her/his local files,
Developer 1 tries to commit her/his changes to the repository
« CVS examines the local version against the latest revision
in the repository, and finds a newer version
« Developer 1 needs to update and merge her/his version first
before she/he can commit the changes!

doemer@ladera:7 > cvs commit —m “Added my module”
cvs commit: Examining .

cvs commit: Examining bin

cvs commit: Examining src
eecs22@ladera.eecs.uci.edu”s password:

cvs commit: Up-to-date check failed for “Makefile*
cvs [commit aborted]: correct above errors first!
cvs commit: saving log message in /tmp/cvsgPQeeD
doemer@ladera:8 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 17

Version Control with CVS

» Step 7: Concurrent updating and merging
— Example (cont’'d): Developer 1 works in local project checkout
« Developer 1 updates her/his local Makefile

* CVS merges the missing changes from the repository
into the local MakeFfile

« Conflicts are found and marked in the updated local MakeFfile
» Developer 1 needs to resolve these conflicts manually!

doemer@ladera:8 > cvs update Makefile
eecs22@ladera.eecs.uci.edu”s password:

RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into Makefile
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in Makefile

C Makefile

doemer@ladera:9 > vi Makefile

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 18

(c) 2013 R. Doemer 9

EECS22L: Software Engineering Project in C Lecture 3

Version Control with CVS

» Step 7: Concurrent updating and merging
— Example (cont'd): Developer 1 works in local project checkout
» Developer 1 opens the Makefi le to resolve the conflicts
« Conflicting lines are listed between <<<< and >>>> markers

« In this example, both changes are valid,
only the three marking lines need to be removed!

Makefile:
01/17/13 by R. Doemer

<<<<<<< MakefFile

module 1 compilation rule

modulel.o: modulel.h modulel.c
gcc modullel.c -o module.o

module2.0: module2.c module2.h
gcc module2.c -o module.o
>S>>>>>> 1.3

"Makefile™ 11L, 202C 6,1 All

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 19

Version Control with CVS

» Step 7: Concurrent updating and merging
— Example (cont’'d): Developer 1 works in local project checkout
« Developer 1 saves the Makefi le with the resolved conflicts

« Developer 1 then commits the properly merged version
to the repository

» Note: If no message is supplied with the commit command,
the default editor is opened for a log message to be typed in.

doemer@ladera:10 > cvs commit -m “Added my module and fixed merge"
cvs commit: Examining .

cvs commit: Examining bin

cvs commit: Examining src

eecs22@ladera.eecs.uci.edu”s password:

Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile

new revision: 1.4; previous revision: 1.3

done

doemer@ladera:11 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 20

(c) 2013 R. Doemer 10

EECS22L: Software Engineering Project in C Lecture 3

Version Control with CVS

* Advanced CVS features:
— Tagging:
« Revision numbers are automatically assigned by CVS
in increasing order and are generally different for different files
» Specific revisions can be tagged with descriptive name tags
— Example: cvs tag ReleaseAlpha
» Tags can then be used instead of revision numbers
« Advise: Properly tag all releases for easy retrieval later!
— Branching:
« Development branches are created in the repository
— Example: cvs tag —b branch_name
» Development branches can be checked out by name
— Example: cvs checkout —r branch_name
» Development branches can be merged into another branch
— Example: cvs update —j branch_name

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 21

Version Control with CVS

» Advanced CVS features (cont’'d):
— Binary files:
 Since revisions are internally stored in diff format,
files are generally assumed to be regular text files

 Binary files (e.g. PDF, JPG, MP3, etc.) must be added
to a CVS repository with —kb option
— Example: cvs add —kb filename

* For more detailed information, read the CVS Manual!

— “Version Management with CVS”
by Per Cederqvist et al.

— Online available at
http://ximbiot.com/cvs/manual/

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2013 R. Doemer 22

(c) 2013 R. Doemer 11

