
EECS22L: Software Engineering Project in C Lecture 7

(c) 2013 R. Doemer 1

EECS 22L: Software Engineering Project
in C Language

Lecture 7

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22L: Software Engineering Project in C, Lecture 7 (c) 2013 R. Doemer 2

Lecture 7: Overview

• Course Administration
– Midterm Course evaluation

• Project 2
– Updates, hints, advice

– Unit testing

– NetPBM package

– System calls

• Towards Object Oriented Programming in C++
– Introducing C++ from the C perspective

EECS22L: Software Engineering Project in C Lecture 7

(c) 2013 R. Doemer 2

EECS22L: Software Engineering Project in C, Lecture 7 (c) 2013 R. Doemer 3

Course Administration

• Midterm Course Evaluation: Results
– Participation

• 15 out of 32 students (46.88%)

– Specific Feedback
• Overall very positive, very encouraging!

• Suggestions for improvement
– Demonstrate more common practices, practice related

– Don’t grade on group performance

– Hard to commit time to this class (due to other classes)

– Not enough time to make projects great (other classes)

– Give project hints earlier

– Have other office hours besides just Monday

– Weekly team presentations on Thursday for status update

Project 2

• Project 2 Setup
– Team accounts will be cleared (all files will be deleted) and

prepared for Project 2 at noon today (2/19)!

– New passwords will be distributed in discussion session

– Use lab session today to set up fresh team account!

• Prize for Project 2
– Multi-page example

• 91b_Prize_Coffee200DPI001.jpg

– Team with first recovered, compiled, and executed code
wins a very special prize!

• Use CVS!
– For success in a team, it is critical to have the same data at

the same status!
– Once set up, it’s all a matter of ‘cvs update’ and ‘make’!

EECS22L: Software Engineering Project in C, Lecture 7 (c) 2013 R. Doemer 4

EECS22L: Software Engineering Project in C Lecture 7

(c) 2013 R. Doemer 3

Project 2

• Perform Automated Unit Testing!
– Test each module individually (all its APIs)

– Use ‘make test’ to compile and run each module in debug mode
• Example: Student records (see EECS 22, Lectures 14 ff.)

EECS22L: Software Engineering Project in C, Lecture 7 (c) 2013 R. Doemer 5

/* Student.c: maintaining student records */
...
#ifdef MAIN /* test the student record functions */
int main(void)
{ STUDENT *s1 = NULL;

s1 = NewStudent(1001, "Jane Doe", 'A');
PrintStudent(s1);
[...]
return 0;

} /* end of main */
#endif /* MAIN */
/* EOF */

% vi Student.c
% make Student
gcc –Wall –ansi –g –c Student.c –o Student.o
gcc -DMAIN -Wall -ansi -g Student.c Student.o -o Student

Project 2

• NetPBM Package
– Graphics manipulation programs and libraries

• Over 220 separate programs in the package
• man netpbm

– File formats are pbm(5), pgm(5), ppm(5), and pam(5)
• Most commands have "pbm", "pgm", "ppm", or "pnm" in name
• Examples: pnmtojpeg, pnmscale, giftopnm, pnmscale

– Each of these programs has its own man page
• man pnmtojpeg

– NetPBM commands are best used in shell pipelines
• Example to convert PNG files to JPEG files:
• bash# for f in *.png; do pngtopnm $f |
ppmtojpeg >`basename $f.png` .jpg; done

• tcsh# foreach f (*.png); pngtopnm $f |
pnmtojpeg >`basename $f.png`.jpg; end

EECS22L: Software Engineering Project in C, Lecture 7 (c) 2013 R. Doemer 6

EECS22L: Software Engineering Project in C Lecture 7

(c) 2013 R. Doemer 4

Project 2

• System Calls
– Linux provides a system call interface

to execute a shell command from within a C program
• #include <stdlib.h>

• int system(const char *command);

– system(command) executes a command specified in
command by calling /bin/sh -c command, and
returns after the command has been completed

– The return value is -1 on error (something failed), or
the return value of the command otherwise

– Example:
if (0 != system(“pnmtojpeg image.ppm >image.jpg”))
{ fprintf(stderr, “Conversion to JPG failed!\n”);

exit(10);
}

EECS22L: Software Engineering Project in C, Lecture 7 (c) 2013 R. Doemer 7

Object Oriented Programming

• Towards Object Oriented Programming in C++
– C++ can be seen as “improved” C

– C++ offers a number of new features, including:
• Inline functions

• References

• Default arguments

• Function and operator overloading

• Classes and objects

• Member functions (methods)

• Constructor and destructor

• Class and function templates

• Class inheritance

• Polymorphism

• Exception handling

EECS22L: Software Engineering Project in C, Lecture 7 (c) 2013 R. Doemer 8

