
EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 13

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 2

Lecture 13: Overview

• Pointer Operations
– Definition, initialization and assignment

– Pointer dereferencing

– Pointer arithmetic
• Increment, decrement

– Pointer comparison

• Pointers and Arrays
– Equivalence!

– Array layout in linear address space

• Validating Dynamic Memory Usage
– valgrind, a memory error detector

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 2

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 3

Pointer Operations

• Pointers are variables whose values are addresses
– The “address-of” operator (&) returns a pointer!

• Pointer Definition
– The unary * operator indicates a pointer type in a definition

• Pointer initialization or assignment
– A pointer may be set to the address of another variable

– A pointer may be set to 0 (points to no object)

– A pointer may be set to NULL (points to “NULL” object)

int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */

p = &x; /* p points to x */

p = 0; /* p points to no object */

#include <stdio.h> /* defines NULL as 0 */
p = NULL; /* p points to no object */

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 4

Pointer Operations

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42

p

42

x

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 3

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 5

Pointer Operations

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42
x is 84, content of p is 84

p

84

x

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 6

Pointer Operations

• Pointer Dereferencing
– The -> operator dereferences a pointer to a structure

to the named structure member (“member-access” operator)

struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

struct Student *p = &Jane;

void PrintStudent(void)
{

printf(“ID: %d\n”, p->ID);
printf(“Name: %s\n”, p->Name);
printf(“Grade: %c\n”, p->Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

p

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 4

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 7

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */

20,

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 8

20,

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30,

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 5

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 9

20, 30,

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20,

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 10

20, 30, 20,

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */
p += 2; /* increment p by 2 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20, 40,

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 6

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 11

Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */

if (p1 == p2)
{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

Contents of p1 and p2 are the same!

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 12

Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */
p1 += 2; /* increment p1 by 2 */
if (p1 == p2)

{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

p1 and p2 are identical!
Contents of p1 and p2 are the same!

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 7

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 13

Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */

if (p1 > p2)
{ printf(“p1 points to an element after p2!\n”);
}

if (p1 < p2)
{ printf(“p1 points to an element before p2!\n”);
}

p1 points to an element before p2!

Pointers and Arrays

• In C, Pointers and Arrays are equivalent!
– A pointer represents an address in memory

– An array is represented by the address of its first element
in memory

• Passing Arrays and Pointers to Functions
– Arrays are passed by reference

– Pointers are references and passed as such

• Array Access is equivalent to Pointer Dereferencing
– Example:

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 14

int A[10];
...
A[0] = 42;
...
A[5] = 17;

int A[10], *p = &A[0];
...
*p = 42;
...
*(p+5) = 17;

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 8

Pointers and Arrays

• Dynamic Arrays
– Example 1:

Fixed 1-dim. array
• Fixed definition

• Passed as fixed array

• Fixed array access

Fixed size everywhere!

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 15

int Sum(int A[100])
{

int i, sum = 0;
for(i=0; i<100; i++)
{ sum += A[i];
}
return sum;

}

int main(void)
{

int d[100], s;
...
s = Sum(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 2:

Fixed 1-dim. array
• Fixed definition

• Passed as fixed array
plus size

Received as pointer
and size!

Accessed via pointer
with offset!

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 16

int Sum(int *p, int m)
{

int i, sum = 0;
for(i=0; i<m; i++)
{ sum += *(p + i);
}
return sum;

}

int main(void)
{

int d[100], s;
...
s = Sum(d, 100);
...
return 0;

}

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 9

Pointers and Arrays

• Dynamic Arrays
– Example 3:

Dynamic 1-dim. array
Dynamic allocation

Passed as pointer
plus size

Received as pointer
and size!

Accessed via pointer
with offset!

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 17

int Sum(int *p, int m)
{

int i, sum = 0;
for(i=0; i<m; i++)
{ sum += *(p + i);
}
return sum;

}

int main(void)
{

int *d, s;
d = malloc(sizeof(int)*100);
if (!d)

{ exit(10); }
...
s = Sum(d, 100);
free(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 4:

Fixed 2-dim. array
• Fixed definition

• Passed as fixed array

• Fixed array access

Fixed sizes everywhere!

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 18

int Sum(int A[5][20])
{

int i, j, sum = 0;
for(i=0; i<5; i++)

for(j=0; j<20; j++)
{ sum += A[i][j];
}

return sum;
}

int main(void)
{

int d[5][20], s;
...
s = Sum(d);
...
return 0;

}

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 10

Pointers and Arrays

• Dynamic Arrays
– Example 5:

Mixed 2-dim. array
• Fixed definition

of dimension 1 (columns)

• Dynamic allocation
of dimension 2 (rows)

Passed as array with
dynamic dimension 2
(number of rows)
and sizes

Fixed array access

Multi-dimensional arrays
are arrays of arrays…

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 19

int Sum(int A[][20], int m,int n)
{

int i, j, sum = 0;
for(i=0; i<m; i++)

for(j=0; j<n; j++)
{ sum += A[i][j];
}

return sum;
}

int main(void)
{

int (*d)[20], s;
d = malloc(sizeof(int[20])*5);
if (!d)

{ exit(10); }
...
s = Sum(d, 5, 20);
free(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 6:

Dynamic 2-dim. array
Dynamic allocation

of all dimensions

Passed as pointer

Received as pointer!

Accessed via pointer!

An array…
of any dimension

of any size

…can be mapped into
linear address space!

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 20

int Sum(int *p, int m, int n)
{

int i, j, sum = 0;
for(i=0; i<m; i++)

for(j=0; j<n; j++)
{ sum += *(p + i*n + j);
}

return sum;
}

int main(void)
{

int *d, s;
d = malloc(sizeof(int)*5*20);
if (!d)

{ exit(10); }
...
s = Sum(d, 5, 20);
free(d);
...
return 0;

}

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 11

Dynamic Memory Allocation

• Typical Dynamic Memory Usage Errors
– Omitting malloc(): Access to unallocated memory

– Reading uninitialized memory
– Omitting free(): Memory leak

– Freeing memory too early, or multiple times

– …

• Validating Dynamic Memory Usage
– valgrind: A memory error detector (and more)

• Instruments the program at (right before) run-time
• Intercepts and checks calls to malloc() and free()

• Intercepts and checks memory accesses

• Reports any errors to the user (or a log file)

 Use valgrind for testing and debugging!

• There should be 0 errors and 0 bytes leaked!

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 21

Dynamic Memory Allocation

• Example Student Records: Student.h

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 22

/* Student.h: header file for student records */

#ifndef STUDENT_H
#define STUDENT_H

#define SLEN 40

struct Student
{ int ID;

char Name[SLEN+1];
char Grade;

};
typedef struct Student STUDENT;

/* allocate a new student record */
STUDENT *NewStudent(int ID, char *Name, char Grade);

/* delete a student record */
void DeleteStudent(STUDENT *s);

/* print a student record */
void PrintStudent(STUDENT *s);

#endif /* STUDENT_H */

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 12

Dynamic Memory Allocation

• Example Student Records: Student.c (part 1/3)

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 23

/* Student.c: maintaining student records */

#include "Student.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

/* allocate a new student record */
STUDENT *NewStudent(int ID, char *Name, char Grade)
{ STUDENT *s;

s = malloc(sizeof(STUDENT));
if (! s)

{ perror("Out of memory! Aborting...");
exit(10);

} /* fi */
s->ID = ID;
strncpy(s->Name, Name, SLEN);
s->Name[SLEN] = '\0';
s->Grade = Grade;
return s;

} /* end of NewStudent */
...

Dynamic Memory Allocation

• Example Student Records: Student.c (part 2/3)

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 24

...

/* delete a student record */
void DeleteStudent(STUDENT *s)
{

assert(s);
free(s);

} /* end of DeleteStudent */

/* print a student record */
void PrintStudent(STUDENT *s)
{

assert(s);
printf("Student ID: %d\n", s->ID);
printf("Student Name: %s\n", s->Name);
printf("Student Grade: %c\n", s->Grade);

} /* end of PrintStudent */

...

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 13

Dynamic Memory Allocation

• Example Student Records: Student.c (part 3/3)

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 25

...
/* test the student record functions */
int main(void)
{ STUDENT *s1 = NULL, *s2 = NULL;

printf("Creating 2 student records...\n");
s1 = NewStudent(1001, "Jane Doe", 'A');
s2 = NewStudent(1002, "John Doe", 'C');

printf("Printing the student records...\n");
PrintStudent(s1);
PrintStudent(s2);

printf("Deleting the student records...\n");
DeleteStudent(s1);
s1 = NULL;
DeleteStudent(s2);
s2 = NULL;

printf("Done.\n");
return 0;

} /* end of main */

/* EOF */

Dynamic Memory Allocation

• Example Student Records: Makefile

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 26

Makefile: Student Records

macro definitions
CC = gcc
DEBUG = -g
#DEBUG = -O2
CFLAGS = -Wall -ansi $(DEBUG) -c
LFLAGS = -Wall $(DEBUG)

dummy targets
all: Student

clean:
rm -f *.o
rm -f Student

compilation rules
Student.o: Student.c Student.h

$(CC) $(CFLAGS) Student.c -o Student.o

Student: Student.o
$(CC) $(LFLAGS) Student.o -o Student

EOF

EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 14

Dynamic Memory Allocation

• Example Session

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 27

% vi Student.h
% vi Student.c
% vi Makefile
% make
gcc -Wall -ansi -g -c Student.c -o Student.o
gcc -Wall -g Student.o -o Student
% Student
Creating 2 student records...
Printing the student records...
Student ID: 1001
Student Name: Jane Doe
Student Grade: A
Student ID: 1002
Student Name: John Doe
Student Grade: C
Deleting the student records...
Done.
%

Dynamic Memory Allocation

• Example Session

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 28

% valgrind Student
==23638== Memcheck, a memory error detector
==23638== […]
==23638== Command: Student
Creating 2 student records...
Printing the student records...
Student ID: 1001
Student Name: Jane Doe
Student Grade: A
Student ID: 1002
Student Name: John Doe
Student Grade: C
Deleting the student records...
Done.
==23638== HEAP SUMMARY:
==23638== in use at exit: 0 bytes in 0 blocks
==23638== total heap usage: 2 allocs, 2 frees, 96 bytes allocated
==23638==
==23638== All heap blocks were freed -- no leaks are possible
==23638== ERROR SUMMARY: 0 errors from 0 contexts […]
%

