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Lecture 13: Overview

• Pointer Operations
– Definition, initialization and assignment

– Pointer dereferencing

– Pointer arithmetic
• Increment, decrement

– Pointer comparison

• Pointers and Arrays
– Equivalence!

– Array layout in linear address space

• Validating Dynamic Memory Usage
– valgrind, a memory error detector
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Pointer Operations

• Pointers are variables whose values are addresses
– The “address-of” operator (&) returns a pointer!

• Pointer Definition
– The unary * operator indicates a pointer type in a definition

• Pointer initialization or assignment
– A pointer may be set to the address of another variable

– A pointer may be set to 0 (points to no object)

– A pointer may be set to NULL (points to “NULL” object)

int x = 42;   /* regular integer variable */
int *p;       /* pointer to an integer */

p = &x;       /* p points to x */

p = 0;        /* p points to no object */

#include <stdio.h>   /* defines NULL as 0 */
p = NULL;     /* p points to no object */
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Pointer Operations

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int  x = 42;   /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x;        /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42

p

42

x
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Pointer Operations

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int  x = 42;   /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x;        /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);
*p = 2 * *p;   /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42
x is 84, content of p is 84

p

84

x
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Pointer Operations

• Pointer Dereferencing
– The -> operator dereferences a pointer to a structure

to the named structure member (“member-access” operator)

struct Student
{  int  ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

struct Student *p = &Jane;

void PrintStudent(void)
{

printf(“ID:    %d\n”, p->ID);
printf(“Name:  %s\n”, p->Name);
printf(“Grade: %c\n”, p->Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID:    1001
Name:  Jane Doe
Grade: A

p
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Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p;                      /* pointer to integer */

p = &x[1];                   /* point p to x[1] */
printf(“%d, ”, *p);          /* print content of p */

20, 
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20, 

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p;                      /* pointer to integer */

p = &x[1];                   /* point p to x[1] */
printf(“%d, ”, *p);          /* print content of p */
p++;                         /* increment p by 1 */
printf(“%d, ”, *p);          /* print content of p */

20, 30, 



EECS22: Advanced C Programming Lecture 13

(c) 2014 R. Doemer 5

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 9

20, 30, 

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p;                      /* pointer to integer */

p = &x[1];                   /* point p to x[1] */
printf(“%d, ”, *p);          /* print content of p */
p++;                         /* increment p by 1 */
printf(“%d, ”, *p);          /* print content of p */
p--;                         /* decrement p by 1 */
printf(“%d, ”, *p);          /* print content of p */

20, 30, 20, 
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20, 30, 20, 

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p;                      /* pointer to integer */

p = &x[1];                   /* point p to x[1] */
printf(“%d, ”, *p);          /* print content of p */
p++;                         /* increment p by 1 */
printf(“%d, ”, *p);          /* print content of p */
p--;                         /* decrement p by 1 */
printf(“%d, ”, *p);          /* print content of p */
p += 2;                      /* increment p by 2 */
printf(“%d, ”, *p);          /* print content of p */

20, 30, 20, 40,
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Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2;                /* pointers to integer */

p1 = &x[1]; p2 = &x[3];      /* point to x[1], x[3] */

if (p1 == p2)
{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

Contents of p1 and p2 are the same!
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Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2;                /* pointers to integer */

p1 = &x[1]; p2 = &x[3];      /* point to x[1], x[3] */
p1 += 2;                     /* increment p1 by 2 */
if (p1 == p2)

{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

p1 and p2 are identical!
Contents of p1 and p2 are the same!
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Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2;                /* pointers to integer */

p1 = &x[1]; p2 = &x[3];      /* point to x[1], x[3] */

if (p1 > p2)
{ printf(“p1 points to an element after p2!\n”);
}

if (p1 < p2)
{ printf(“p1 points to an element before p2!\n”);
}

p1 points to an element before p2!

Pointers and Arrays

• In C, Pointers and Arrays are equivalent!
– A pointer represents an address in memory

– An array is represented by the address of its first element
in memory

• Passing Arrays and Pointers to Functions
– Arrays are passed by reference

– Pointers are references and passed as such

• Array Access is equivalent to Pointer Dereferencing
– Example:
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int A[10];
...
A[0] = 42;
...
A[5] = 17;

int A[10], *p = &A[0];
...
*p = 42;
...
*(p+5) = 17;
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Pointers and Arrays

• Dynamic Arrays
– Example 1:

Fixed 1-dim. array
• Fixed definition

• Passed as fixed array

• Fixed array access

Fixed size everywhere!
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int Sum(int A[100])
{

int i, sum = 0;
for(i=0; i<100; i++)
{ sum += A[i];
}
return sum;

}

int main(void)
{

int d[100], s;
...
s = Sum(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 2:

Fixed 1-dim. array
• Fixed definition

• Passed as fixed array
plus size

Received as pointer
and size!

Accessed via pointer
with offset!
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int Sum(int *p, int m)
{

int i, sum = 0;
for(i=0; i<m; i++)
{ sum += *(p + i);
}
return sum;

}

int main(void)
{

int d[100], s;
...
s = Sum(d, 100);
...
return 0;

}
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Pointers and Arrays

• Dynamic Arrays
– Example 3:

Dynamic 1-dim. array
Dynamic allocation

Passed as pointer
plus size

Received as pointer
and size!

Accessed via pointer
with offset!
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int Sum(int *p, int m)
{

int i, sum = 0;
for(i=0; i<m; i++)
{ sum += *(p + i);
}
return sum;

}

int main(void)
{

int *d, s;
d = malloc(sizeof(int)*100);
if (!d)

{ exit(10); }
...
s = Sum(d, 100);
free(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 4:

Fixed 2-dim. array
• Fixed definition

• Passed as fixed array

• Fixed array access

Fixed sizes everywhere!
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int Sum(int A[5][20])
{

int i, j, sum = 0;
for(i=0; i<5; i++)

for(j=0; j<20; j++)
{ sum += A[i][j];
}

return sum;
}

int main(void)
{

int d[5][20], s;
...
s = Sum(d);
...
return 0;

}
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Pointers and Arrays

• Dynamic Arrays
– Example 5:

Mixed 2-dim. array
• Fixed definition

of dimension 1 (columns)

• Dynamic allocation
of dimension 2 (rows)

Passed as array with
dynamic dimension 2
(number of rows)
and sizes

Fixed array access

Multi-dimensional arrays
are arrays of arrays…
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int Sum(int A[][20], int m,int n)
{

int i, j, sum = 0;
for(i=0; i<m; i++)

for(j=0; j<n; j++)
{ sum += A[i][j];
}

return sum;
}

int main(void)
{

int (*d)[20], s;
d = malloc(sizeof(int[20])*5);
if (!d)

{ exit(10); }
...
s = Sum(d, 5, 20);
free(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 6:

Dynamic 2-dim. array
Dynamic allocation

of all dimensions

Passed as pointer

Received as pointer!

Accessed via pointer!

An array…
of any dimension

of any size

…can be mapped into
linear address space!
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int Sum(int *p, int m, int n)
{

int i, j, sum = 0;
for(i=0; i<m; i++)

for(j=0; j<n; j++)
{ sum += *(p + i*n + j);
}

return sum;
}

int main(void)
{

int *d, s;
d = malloc(sizeof(int)*5*20);
if (!d)

{ exit(10); }
...
s = Sum(d, 5, 20);
free(d);
...
return 0;

}
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Dynamic Memory Allocation

• Typical Dynamic Memory Usage Errors
– Omitting malloc(): Access to unallocated memory

– Reading uninitialized memory
– Omitting free(): Memory leak

– Freeing memory too early, or multiple times

– …

• Validating Dynamic Memory Usage
– valgrind: A memory error detector (and more)

• Instruments the program at (right before) run-time
• Intercepts and checks calls to malloc() and free()

• Intercepts and checks memory accesses

• Reports any errors to the user (or a log file)

 Use valgrind for testing and debugging!

• There should be 0 errors and 0 bytes leaked!
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Dynamic Memory Allocation

• Example Student Records:  Student.h
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/* Student.h: header file for student records */

#ifndef STUDENT_H
#define STUDENT_H

#define SLEN 40

struct Student
{  int  ID;

char Name[SLEN+1];
char Grade;

};
typedef struct Student STUDENT;

/* allocate a new student record */
STUDENT *NewStudent(int ID, char *Name, char Grade);

/* delete a student record */
void DeleteStudent(STUDENT *s);

/* print a student record */
void PrintStudent(STUDENT *s);

#endif /* STUDENT_H */
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Dynamic Memory Allocation

• Example Student Records:  Student.c (part 1/3)
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/* Student.c: maintaining student records */

#include "Student.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

/* allocate a new student record */
STUDENT *NewStudent(int ID, char *Name, char Grade)
{   STUDENT *s;

s = malloc(sizeof(STUDENT));
if (! s)

{ perror("Out of memory! Aborting...");
exit(10);

} /* fi */
s->ID = ID;
strncpy(s->Name, Name, SLEN);
s->Name[SLEN] = '\0';
s->Grade = Grade;
return s;

} /* end of NewStudent */
...

Dynamic Memory Allocation

• Example Student Records:  Student.c (part 2/3)
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...

/* delete a student record */
void DeleteStudent(STUDENT *s)
{

assert(s);
free(s);

} /* end of DeleteStudent */

/* print a student record */
void PrintStudent(STUDENT *s)
{

assert(s);
printf("Student ID:    %d\n", s->ID);
printf("Student Name:  %s\n", s->Name);
printf("Student Grade: %c\n", s->Grade);

} /* end of PrintStudent */

...
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Dynamic Memory Allocation

• Example Student Records:  Student.c (part 3/3)
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...
/* test the student record functions */
int main(void)
{   STUDENT *s1 = NULL, *s2 = NULL;

printf("Creating 2 student records...\n");
s1 = NewStudent(1001, "Jane Doe", 'A');
s2 = NewStudent(1002, "John Doe", 'C');

printf("Printing the student records...\n");
PrintStudent(s1);
PrintStudent(s2);

printf("Deleting the student records...\n");
DeleteStudent(s1);
s1 = NULL;
DeleteStudent(s2);
s2 = NULL;

printf("Done.\n");
return 0;

} /* end of main */

/* EOF */

Dynamic Memory Allocation

• Example Student Records:  Makefile
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# Makefile: Student Records

# macro definitions
CC = gcc
DEBUG = -g
#DEBUG = -O2
CFLAGS = -Wall -ansi $(DEBUG) -c
LFLAGS = -Wall $(DEBUG)

# dummy targets
all: Student

clean:
rm -f *.o
rm -f Student

# compilation rules
Student.o: Student.c Student.h

$(CC) $(CFLAGS) Student.c -o Student.o

Student: Student.o
$(CC) $(LFLAGS) Student.o -o Student

# EOF
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Dynamic Memory Allocation

• Example Session
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% vi Student.h
% vi Student.c
% vi Makefile
% make
gcc -Wall -ansi -g -c Student.c -o Student.o
gcc -Wall -g Student.o -o Student
% Student
Creating 2 student records...
Printing the student records...
Student ID:    1001
Student Name:  Jane Doe
Student Grade: A
Student ID:    1002
Student Name:  John Doe
Student Grade: C
Deleting the student records...
Done.
%

Dynamic Memory Allocation

• Example Session

EECS22: Advanced C Programming, Lecture 13 (c) 2014 R. Doemer 28

% valgrind Student
==23638== Memcheck, a memory error detector
==23638== […]
==23638== Command: Student
Creating 2 student records...
Printing the student records...
Student ID:    1001
Student Name:  Jane Doe
Student Grade: A
Student ID:    1002
Student Name:  John Doe
Student Grade: C
Deleting the student records...
Done.
==23638== HEAP SUMMARY:
==23638==    in use at exit: 0 bytes in 0 blocks
==23638==  total heap usage: 2 allocs, 2 frees, 96 bytes allocated
==23638==
==23638== All heap blocks were freed -- no leaks are possible
==23638== ERROR SUMMARY: 0 errors from 0 contexts […]
%


