
EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 18

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 2

Lecture 18: Overview

• Course Administration
– Reminder: Final course evaluation

• Types
– Type Conversion

– Types in Expressions

– Type Qualifiers

• Functions
– Passing Data To/From Functions

– Variable Argument Lists

• String Operations

• Standard Library
– Functions defined in stdlib.h, string.h, math.h

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 2

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 3

Course Administration

• Final Course Evaluation
– Open until end of 10th week (Sunday night)

– Dec. 2, 2014, through Dec. 14, 2014, 11:45pm

– Online via EEE Evaluation application

• Mandatory Evaluation of Course and Instructor
– Voluntary

– Anonymous

– Very valuable

• Please spend 5 minutes for this survey!
– Your feedback is appreciated!

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 4

Type Conversion

• Explicit Type Conversion
– types can be explicitly converted to other types, by use of

the type cast operator:
(type) expression

– the target type is named explicitly in parentheses before the
source expression

– Examples:
• Float = (float) LongInt

– converts the long int value into a float value

• Integer = (int) Double
– converts the double value into an int value

– any fractional part is truncated!

• Char = (char) LongLongInt
– converts the long long int value into a char value

– any out-of-range values are silently cut off!

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 3

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 5

Type Conversion

• Implicit Type Conversion
– Type promotion

• integral promotion
– unsigned or signed char is promoted to
unsigned or signed int before any operation

– unsigned or signed short is promoted to
unsigned or signed int before any operation

• binary arithmetic operators are defined only for same types
– the smaller type is converted to the larger type (before operation)

– Examples:
» ShortInt * LongInt results in a long int type

» LongDouble * Float results in a long double type

– Type coercion
• most types are automatically converted to expected types
• Example: Double = Float, or Char = LongInt

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 6

Types in Expressions

• Expressions are composed of constants, variables
and operators, each of which has an associated type

• Example: short int s;
int i;
long int l;
float f;
double d;

l = 2 * s + i * f - 0.5 * d;

int int

int

int float

float

double double

double

float

double

long

long

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 4

Type Qualifiers

• Types may be further qualified
– Type qualifier const

• The value of a const object cannot be changed

• Initialization is OK, assignment is not

• Example:
– const double pi = 3.1415926536;

Object may be placed in read-only memory (ROM)

– Type qualifier volatile
• The value of a volatile object must not be used

for compiler optimizations

• Machine registers for memory-mapped I/O are volatile

• Example:
– volatile char *StatusReg = 0x40000000;

– while(*StatusReg == 0x00) ;

 Accesses to volatile objects must not be optimized away

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 7

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 8

Passing Data To/From Functions

• Passing Arguments to Functions
– Options:

• Pass by value

• Pass by reference

• Via global variable

• Returning Results from Functions
– Options:

• Via return statement

• Via pointer arguments (“store at address-of”)

• Via global variable

• Considerations
– Type of data (affects pass by value/reference)

– Amount of data (affects performance)
– Packaging in structures (struct)

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 5

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 9

Passing Data To/From Functions

• Passing Arguments to Functions
– Pass by value

• only the current value is passed as argument
• the parameter is a copy of the argument
• changes to the parameter do not affect the argument

– Pass by reference
• a reference to the object is passed as argument
• the parameter is a reference to the argument
• changes to the parameter do affect the argument

 In ANSI C, ...
• ... basic types and structures are passed by value
• ... arrays are passed by reference
• ... pointers can pass any object “by reference”

– Via global variable
• Almost always a bad idea!

Passing Data To/From Functions

• Passing Results back to the Caller
– Via return statement

• Breaks the control flow and immediately exits the function

• Passes a single object to the caller

• Passes by value
– Can be seen as an assignment of the given value to a result variable

(whose type is the return type of the function)

– Type conversion rules apply as for assignment
– Cannot return an array!

– Via pointer arguments (“store at address-of”)
• Manual implementation of “pass by reference”
• Requires explicit handling of assignments
• Can pass multiple objects

– Via global variable
• Almost always a bad idea!

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 10

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 6

Passing Data To/From Functions

• Passing Results back to the Caller
– Advise: Avoid returning pointers to local variables!
 Never return a pointer to an auto variable!

• The variable lifetime ends with the return from the function!

• Any access to that pointer by the caller is undefined!

– Example:

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 11

char *Date(int m, int d, int y)
{ char Buffer[100];

sprintf(Buffer, "%d/%d/%d", m,d,y);
return Buffer;

}
...
printf("Today is %s.", Date(12,09,14));

Today is #@#$%@#$@!...

Passing Data To/From Functions

• Passing Results back to the Caller
– Advise: Avoid returning pointers to local variables!
 Avoid returning a pointer to a static variable!

• Variable lifetime is from program start to end,
but only a single value can be used at any time!

• The value may be overwritten before it is used!

– Example:

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 12

char *Date(int m, int d, int y)
{ static char Buffer[100];

sprintf(Buffer, "%d/%d/%d", m,d,y);
return Buffer;

}
...
printf("Today is %s.", Date(12,09,14));

Today is 12/09/14.

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 7

• Passing Results back to the Caller
– Advise: Avoid returning pointers to local variables!
 Avoid returning a pointer to a static variable!

• Variable lifetime is from program start to end,
but only a single value can be used at any time!

• The value may be overwritten before it is used!

– Example:
char *Date(int m, int d, int y)
{ static char Buffer[100];

sprintf(Buffer, "%d/%d/%d", m,d,y);
return Buffer;

}
...
printf("Today is %s, tomorrow is %s!",

Date(12,09,14), Date(12,10,14));

Passing Data To/From Functions

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 13

Today is 12/10/14, tomorrow is 12/10/14!

Variable Argument Lists

• Functions can take a variable number of arguments
– Example: int printf(char *fmt, ...);
– Note: The declaration ...

• indicates a variable number of arguments are following
• is a valid token of the C language
• can be used only at the end of an argument list

– Header file stdarg.h provides
• Type va_list

– Type of a pointer to an argument (e.g. ap)

• Macro va_start(va_list ap, last_arg)
– Initializes ap to point to the first variable argument after last_arg

• Macro va_arg(va_list ap, type)
– Returns the value (of type type) of the next variable argument

• Macro va_end(va_list ap)
– Must be called once after all arguments are processed

but before the function returns

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 14

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 8

Variable Argument Lists

• Functions can take a variable number of arguments
– Example:

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 15

#include <stdarg.h>

int SumN(int N, ...)
{

va_list ap;
int i, a, s = 0;

va_start(ap, N);
for(i=0; i<N; i++)
{

a = va_arg(ap, int);
s += a;

}
va_end(ap);
return s;

}

int main(void)
{

int s1, s2;

s1 = SumN(3, 1,2,3);
s2 = SumN(10,

1,2,3,4,5,
6,7,8,9,10);

return SumN(2, s1, s2);
}

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 16

String Operations

• String Operations using Pointers
– Example: String length

int Length(char *s)
{

int l = 0;
char *p = s;

while(*p != 0)
{ p++;

l++;
}
return l;

}

Length of ABC is 3
Length of Hello World! is 12

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“Length of %s is %d\n”,
s1, Length(&s1[0]));

printf(“Length of %s is %d\n”,
s2, Length(&s2[0]));

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 9

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 17

String Operations

• String Operations using Pointers
– Example: String length

– Array and pointer types are equivalent
• s2 is an array, but can be passed as a pointer argument

• Character array s2 is same as character pointer &s2[0]

int Length(char *s)
{

int l = 0;
char *p = s;

while(*p != 0)
{ p++;

l++;
}
return l;

}

Length of ABC is 3
Length of Hello World! is 12

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“Length of %s is %d\n”,
s1, Length(&s1[0]));

printf(“Length of %s is %d\n”,
s2, Length(s2));

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 18

String Operations

• String Operations using Pointers
– Example: String length

– Array and pointer types are equivalent
• s1 is an array of characters, s2 is a pointer to character

• Both s1 and s2 can be passed to character pointer s

int Length(char *s)
{

int l = 0;
char *p = s;

while(*p != 0)
{ p++;

l++;
}
return l;

}

Length of ABC is 3
Length of Hello World! is 12

char s1[] = “ABC”;
char *s2 = “Hello World!”;

printf(“Length of %s is %d\n”,
s1, Length(s1));

printf(“Length of %s is %d\n”,
s2, Length(s2));

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 10

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 19

String Operations

• String Operations using Pointers
– Example: String length

– Array and pointer types are equivalent
• s1 is an array of characters, s2 is a pointer to character

• Both s1 and s2 can be passed to character array s

int Length(char s[])
{

int l = 0;
char *p = s;

while(*p != 0)
{ p++;

l++;
}
return l;

}

Length of ABC is 3
Length of Hello World! is 12

char s1[] = “ABC”;
char *s2 = “Hello World!”;

printf(“Length of %s is %d\n”,
s1, Length(s1));

printf(“Length of %s is %d\n”,
s2, Length(s2));

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 20

String Operations

• String Operations using Pointers
– Example: String copy

– Passing pointers as arguments to functions
• Function can modify caller data by pointer dereferencing

• Passing pointers = Pass by reference!

void Copy(
char *Dst,
char *Src)

{
do{

*Dst = *Src;
Dst++;

} while(*Src++);
}

s1 is ABC, s2 is Hello World!
s1 is ABC, s2 is ABC

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“s1 is %s, s2 is %s\n”,
s1, s2);

Copy(s2, s1);
printf(“s1 is %s, s2 is %s\n”,

s1, s2);

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 11

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 21

String Operations

• String Operations using Pointers
– Example: String copy

– Passing pointers as arguments to functions
• Function can modify caller data by pointer dereferencing

• Type qualifier const:
Modification by pointer dereferencing not allowed!

void Copy(
char *Dst,

const char *Src)
{
do{

*Dst = *Src;
Dst++;

} while(*Src++);
}

s1 is ABC, s2 is Hello World!
s1 is ABC, s2 is ABC

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“s1 is %s, s2 is %s\n”,
s1, s2);

Copy(s2, s1);
printf(“s1 is %s, s2 is %s\n”,

s1, s2);

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 22

String Operations

• String Operations using Pointers
– Example: String copy

– Passing pointers as arguments to functions
• Function can modify caller data by pointer dereferencing

• Type qualifier const:
Modification by pointer dereferencing not allowed!

void Copy(
const char *Dst,
const char *Src)

{
do{

*Dst = *Src;
Dst++;

} while(*Src++);
}

s1 is ABC, s2 is Hello World!
s1 is ABC, s2 is ABC

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“s1 is %s, s2 is %s\n”,
s1, s2);

Copy(s2, s1);
printf(“s1 is %s, s2 is %s\n”,

s1, s2);
Error!

Write access to
const data!

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 12

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 23

Standard Library

• Standard C library
– standard library supplied with every C compiler
– predefined standard functions

• e.g. printf(), scanf(), etc.

• C library header files
– input/output function declarations #include <stdio.h>
– standard function declarations #include <stdlib.h>
– string function declarations #include <string.h>
– others

• C library linker file
– contains standard function definitions (pre-compiled)

• library file libc.a

– compiler links against the standard library by default
(no need to supply extra options)

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 24

Standard Library

• Standard Math Library
– standard library supplied with every C compiler

– predefined mathematical functions

• e.g. cos(x), sqrt(x), etc.

• Math library header file
– contains math function declarations
– #include <math.h>

• Math library linker file
– contains math function definitions (pre-compiled)

• library file libm.a

– compiler needs to link against the math library
– use option –llibraryname

– Example: gcc MathProgram.c –o MathProgram -lm

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 13

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 25

Standard Library

• Functions declared in stdlib.h (selected subset)
– int abs(int x);

– long int labs(long int x);

• return the absolute value of a (long) integer x

– int rand(void);

• return a random value in the range 0 – RAND_MAX

• RAND_MAX is a constant integer (e.g. 32767)

– void srand(unsigned int seed);

• initialize the random number generator with value seed

– void exit(int result);

• exit the program with return value result

– void abort(void);

• abort the program (with an error result)

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 26

Standard Library

• Functions declared in string.h (part 1/2)
– typedef unsigned int size_t;

• type definition for length of strings

– size_t strlen(const char *s);

• returns the length of string s

– int strcmp(const char *s1, const char *s2);

• alphabetically compares string s1 with string s2

• returns -1 / 0 / 1 for less-than / equal-to / greater-than

– int strncmp(const char *s1, const char *s2, size_t n);

• same as previous, but compares maximal n characters

– int strcasecmp(const char *s1, const char *s2);

– int strncasecmp(const char *s1, const char *s2,
size_t n);

• same as string comparisons above, but case-insensitive

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 14

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 27

Standard Library

• Functions declared in string.h (part 2/2)
– char *strcpy(char *s1, const char *s2);

• copies string s2 into string s1

– char *strncpy(char *s1, const char *s2, size_t n);

• copies maximal n characters of string s2 into string s1

– char *strcat(char *s1, const char *s2);

• concatenates string s2 to string s1

– char *strncat(char *s1, const char *s2, size_t n);

• concatenates maximal n characters of string s2 to string s1

– char *strchr(const char *s, int c);

• returns a pointer to the first character c in string s, or NULL if not found

– char *strrchr(const char *s, int c);

• returns a pointer to the last character c in string s, or NULL if not found

– char *strstr(const char *s1, const char *s2);

• returns a pointer to the first appearance of s2 in string s1 (or NULL)

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 28

Standard Library

• Functions declared in math.h (part 1/2)

– double sqrt(double x);

– double pow(double x, double y);

– double exp(double x);

– double log(double x);

– double log10(double x);

– double ceil(double x);

– double floor(double x);

– double fabs(double x);

– double fmod(double x, double y);

 x

x y

e x

log(x)

log10(x)

x

x

x

x mod y

EECS22: Advanced C Programming Lecture 18

(c) 2014 R. Doemer 15

EECS22: Advanced C Programming, Lecture 18 (c) 2014 R. Doemer 29

Standard Library

• Functions declared in math.h (part 2/2)

– double cos(double x);

– double sin(double x);

– double tan(double x);

– double acos(double x);

– double asin(double x);

– double atan(double x);

– double cosh(double x);

– double sinh(double x);

– double tanh(double x);

cos(x)

sin(x)

tan(x)

acos(x)

asin(x)

atan(x)

cosh(x)

sinh(x)

tanh(x)

