

	Assertions					
• E>	ample: Square Root Calculation	Root.c				
	<pre>#include <assert.h></assert.h></pre>					
	<pre>double Root(double x) /* square root app { double l, m, r, d;</pre>	proximation */				
	<pre>assert(x >= 0.0); /* caller must sug l = 0.0; r = x; do{ m = 1 + (r-1)/2.0; d = m * m - x; if (d < 0.0) { d = -d; 1 = m; } else { r = m; } } while (d > 1e-10); return m; }</pre>	ply positive x */				
 Assertion protects contract between caller and callee 						
	Caller is in charge of ensuring positive arguCallee relies on this agreement (otherwise t	ment to function call he loop will not terminate!)			
EECS22:	Advanced C Programming, Lecture 9	(c) 2014 R. Doemer	26			

Debugging	
• Example session: Cylinder.c (part 1/2)	
% vi Cylinder.c	
% gcc Cylinder.c -Wall -ansi -o Cylinder -g	
% gdb Cylinder	
GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-37.el5_7.1)	
Copyright (C) 2009 Free Software Foundation, Inc.	
Reading symbols from	
(adb) break main	
(gub) break main	
(adb) run	
(gub) fun Starting program: /ugerg/faculty/doemer/eegg22/lecture10/Cylinder	
Breakpoint 1 main () at Culinder c.48	
48 printf("Please enter the radius[\n").	
(adb) next	
Please enter the radius!	
$49 \qquad \qquad$	
EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer	30

	Debugging
•	Example session: Cylinder.c (part 1/4)
	% vi Cylinder.c
	% gcc Cylinder.c -o Cylinder -Wall -ansi -g
	% gdb Cylinder
	GNU gdb 6.3
	(gdb) break 55
	Breakpoint 1 at 0x108d0: file Cylinder.c, line 55.
	(gdb) run
	Starting program: /users/faculty/doemer/eecs10/Cylinder/Cylinder
	Please enter the radius: 10
	Please enter the height: 10
	Breakpoint 1, main () at Cylinder.c:56
	56 s = Surface(r, h);
	(gdb) step
	Surface (r=10, h=10) at Cylinder.c:31
	<pre>31 side = CirclePerimeter(r) * h;</pre>
	(gdb) step
	CirclePerimeter (r=10) at Cylinder.c:24
	24 return(2 * pi() * r);
EE	

Debugging			
•	Example session: Cylinder.c (part 3/4)		
	(gdb) down		
	#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31		
	<pre>31 side = CirclePerimeter(r) * h;</pre>		
	(gdb) down		
	#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24		
	24 return(2 * p1() * r);		
	(gab) down #0 pi () at Cylinder c.14		
	14 return (3.1415927):		
	(gdb) finish		
	Run till exit from #0 pi () at Cylinder.c:14		
	0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24		
	24 return(2 * pi() * r);		
	Value returned is \$1 = 3.141592699999999		
	(gdb) finish		
	Run till exit from #0 CirclePerimeter (r=10) at Cylinder.c:24		
	0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31		
	31 side = CirclePerimeter(r) * h;		
EE	•••		

