EECS22: Advanced C Programming

EECS 22: Advanced C Programming
Lecture 9

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 9: Overview

Warm-up Quiz
Course Administration
— Midterm course evaluation

Assertions

— Using and disabling assertions
Debugging

— Source-level debugger gdb

Running a program under debugger control
Navigating and inspecting the stack
Inspecting and modifying variable values
Advanced commands for using break points
Data display debugger ddd

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

Quiz: Question 11
« Today’s computers run at which clock

speed?
85 MPH

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

Quiz: Question 11

« Today’s computers run at which clock
speed?

||‘ d) 1 GHz

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

Quiz: Question 12

* Which of the following names are valid
keywords in ANSI C?
(Check all that apply!)
a) if

when

void

main

)
)
)
) Int

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

Quiz: Question 12

* Which of the following names are valid
keywords in ANSI C?
Check all that apply!)

(
) o) if
||qc) void

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

Quiz: Question 13

* Which of the following names are valid
identifiers in ANSI C?
(Check all that apply!)
a) Xyz
) PC
c) dollar amount
) My Very Long_Variable Name
) 2Fastdyou

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

Quiz: Question 13

* Which of the following names are valid
identifiers in ANSI C?
(Check all that apply!)

Iy a) xyz
mm) b) PC

||‘ d) My _Very Long Variable_Name

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

Quiz: Question 14

« Which of the following constructs are valid
type names in ANSI C?
(Check all that apply!)
a) short char

long double

signed long long

unsigned float

signed

o O T

)
)
)
)

D

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 9

Quiz: Question 14

« Which of the following constructs are valid
type names in ANSI C?
(Check all that apply!)

[b) long double
I c) signed long long

||~ e) signed

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 10

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

is of type double?
(Check all that apply!)
a) 42

.42

4e2

4E2

)
)
)
) 42F

EECS22: Advanced C Programming, Lecture 9

Quiz: Question 15

* Which of the following constants

(c) 2014 R. Doemer

is of type double?
(Check all that apply!)

I b) .42
Il c) 4e2
Iy d) 4E2

EECS22: Advanced C Programming, Lecture 9

Quiz: Question 15

» Which of the following constants

(c) 2014 R. Doemer

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

Quiz: Question 16

« What is the value of the integer x
after the following statement?

‘x:3<<2>>1;

a) Syntax Error!
b) 3

c) 6

d) 12

e) 321

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 13

Quiz: Question 16

« What is the value of the integer x
after the following statement?

‘x:3<<2>>1;

=) c) 6

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 14

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

Quiz: Question 17

* Which of the following expressions correctly
computes the polynomial p=2x2-3x+4 ?
(Check all that apply!)

a) p = 2x"2 — 3x + 4;

b) p = 2xx — 3x + 4;

C) p = X*X*2 — 3*x + 4.0;
d p = 2*(x*Xx + 3)*x + 4;
e) p = (2*Xx — 3)*x + 4;

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 15

Quiz: Question 17

* Which of the following expressions correctly
computes the polynomial p=2x2-3x+4 ?
(Check all that apply!)

||‘C) p = X*x*2 — 3*x + 4.0;

)) p

(2*x — 3)*x + 4;

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 16

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

Quiz: Question 18

 What is the result of the evaluation of the

following expression?
‘1==2||3<4&&5>6 \

a) 123456
b) true
c) fFalse
d 1
e) O
EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 17

Quiz: Question 18

 What is the result of the evaluation of the

following expression?
| 1==2]13<485>6 |

) e) 0

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 18

(c) 2014 R. Doemer

Lecture 9

EECS22: Advanced C Programming

Quiz: Question 19

» Simple prime number test:
The following code fragment iterates variable i over
the range 2 <i < x to find a divisor of x.

What should go into
box 1 in line 47?

a) 1 =0;
by 1 =1;
c) 1 =2;
d 1 = x;
e) x = 0;

EECS22: Advanced C Programming, Lecture 9

int x, i;
printf("'Please input a number: ');
scanf('%d", &x);

initialize variable i \

while(i < x)
{IfxX % i == 0)

{ printf(""%d is not prime\n', X);

break;

}

i++;

if([none of the i is a divisor of x|)
{ printf("'%d is prime\n”, X);
+

(c) 2014 R. Doemer 19

Quiz: Question 19

» Simple prime number test:
The following code fragment iterates variable i over
the range 2 <i < x to find a divisor of x.

What should go into
box 1 in line 4?

EECS22: Advanced C Programming, Lecture 9

int x, i;
printf("'Please input a number: ');
scanf("'%d", &x);

initialize variable i \

while(i < x)
{IfX % 1 == 0)

{ printf("%d is not prime\n”, x);

break;

}

i++;

if(| none of the i is a divisor of X |)
{ printf("%d is prime\n", X);
by

(c) 2014 R. Doemer 20

(c) 2014 R. Doemer

Lecture 9

10

EECS22: Advanced C Programming

Quiz: Question 20

» Simple prime number test:

The following code fragment iterates variable i over
the range 2 <i < x to find a divisor of x.
What should go into |int x, i;)
o) printf("'Please input a number: ');
box 2 in Ilpe 127% scanf("ud", &x):
a) x/ i==0 initialize variable i \
b) x < i while(i < x)
- . {if(x % 1 == 0)
c) ! / x==0 { printf(""%d is not prime\n', Xx);
d 1 +1==x break;
e) 1 ==X +
i++;
if([none of the i is a divisor of x|)
{ printf("'%d is prime\n”, X);
}
EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 21

+ Simple prim

the range 2

ﬂll.»e) i ==X

Quiz: Question 20

e number test:

The following code fragment iterates variable i over

<i < x to find a divisor of x.

What should go into | int x, i;)
box 2 in line 122 printf("'Please input a number: ');

scanf("'%d", &x);

initialize variable i \
while(i < x)

{if(x % i == 0)

break;

}

i++;

if(| none of the i is a divisor of X |)
{ printf("%d is prime\n", X);
by

{ printf("%d is not prime\n”, x);

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 22

(c) 2014 R. Doemer

Lecture 9

11

EECS22: Advanced C Programming

Course Administration

« Midterm Course Evaluation
— One week, starting this Sunday!
— Sunday, Nov. 2, noon — Sunday, Nov. 9, noon
— Online via EEE Evaluation application
» Feedback from students to instructors
— Completely voluntary
— Completely anonymous

— Very valuable
* Help to improve this class!

« Mandatory Final Course Evaluation
— expected for week 10 (TBA)

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

23

Assertions

* Run-time Checks for Diagnostics and Debugging
— Can be manually implemented

#ifdef DEBUG
if (value > 100)
{ printf(“Something’s wrong, value is >100!"");
abort();
y /7= fi */
#endif /* DEBUG */

— Can be enabled at time of compilation (for development)

% gcc —DDEBUG program.c —O0 program
%

— Can be disabled at time of compilation (for final release)

% gcc program.c —0 program
%

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

24

(c) 2014 R. Doemer

Lecture 9

12

EECS22: Advanced C Programming

Assertions

» Assertions: Diagnostics by the standard C library

#include <assert.h>

assert(value <= 100);

— Headerfile assert.h
» Defines assert(condition) (as a preprocessor macro)
— Assertion failure

« At run-time, if condition evaluates to false,
the program is aborted with a corresponding diagnostic message

assertion: program.c:12: main: Assertion “value <= 100" failed.
Abort

— Disabling assertions

« |f NDEBUG is defined when assert.his included,
the assert() macro is ignored (empty statement)

% gcc —DNDEBUG program.c —0 program
%

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 25

Assertions

« Example: Square Root Calculation Root.c

#include <assert.h>

double Root(double x) /* square root approximation */
{ double 1, m, r, d;

assert(x >= 0.0); /* caller must supply positive x */
I =0.0; r = x;
do{ m=1+ (r-1)/2.0;
d=m>*m- x;
< 0.0
= -d;
=m; 3}
else
{r=nm
} while (d
return m;

S
> le-10);

}

— Assertion protects contract between caller and callee
» Caller is in charge of ensuring positive argument to function call
» Callee relies on this agreement (otherwise the loop will not terminate!)

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 26

(c) 2014 R. Doemer

Lecture 9

13

EECS22: Advanced C Programming

Assertions

* Advise on Using Assertions
» Use assertions often
» Confirm assumptions about parameters, calculated values, etc.
» Assertions are cheap (low run-time overhead)!
» Use assertions from beginning during software development
» Diagnostic messages are very helpful in development
— Program aborts as soon as a value is out of expected range
— Location and problem condition are shown
» This can avoid more serious problems later
» Disable assertions for final program delivered to the user
» Diagnostic messages are of no use to the end user!
— User has no idea about condition and source location
» Beware of side-effects in assertions
* Implemented as a macro!
» Can lead to Heisenbugs which disappear when debugging is on!

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 27

Debugging

« Source-level Debugger gdb

— Debugging features
* run the program under debugger control
« follow the control flow of the program during execution
+ set breakpoints to stop execution at specific points
* inspect (and adjust) the values of variables
« find the point in the program where the “crash” happens

— Preparation:
compile your program with debugging support on
» Option —g tells compiler to add debugging information
(symbol tables) to the generated executable file
e gcc —g Program.c —o Program —Wall -ansi
e gdb Program

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 28

(c) 2014 R. Doemer

Lecture 9

14

EECS22: Advanced C Programming

Debugging

» Source-level Debugger gdb

— Running the program under debugger control
® run

— starts the execution of the program in the debugger
break function_name (or file:line_number)

— inserts a breakpoint; program execution will stop at the breakpoint
= cont

— continues the execution of the program in the debugger
list from_line_number,to_line_number

— lists the current or specified range of line_numbers
print variable_name

— prints the current value of the variable variable_name
next

— executes the next statement (one statement at a time)
e quit

— exits the debugger (and terminates the program)
help

— provides helpful details on debugger commands

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 29

Debugging

« Example session: Cylinder.c (part 1/2)

% vi Cylinder.c

% gcc Cylinder.c -Wall -ansi -o Cylinder -g

% gdb Cylinder

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-37.el5_7.1)
Copyright (C) 2009 Free Software Foundation, Inc.

Reading symbols from
/users/faculty/doemer/eecs22/lecturel0/Cylinder...done.
(gdb) break main

Breakpoint 1 at 0x400654: file Cylinder.c, line 48.
(gdb) run

Starting program: /users/faculty/doemer/eecs22/lecturel0/Cylinder
Breakpoint 1, main () at Cylinder.c:48

48 printf(*'Please enter the radius!\n™);

(gdb) next

Please enter the radius!

49 scanf(C"%lf", &r);

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 30

(c) 2014 R. Doemer

Lecture 9

15

EECS22: Advanced C Programming

Debugging

« Example session: Cylinder.c (part 2/2)

(gdb) next

5

50 printf("Please enter the height!\n™);
(gdb) print r

$1 =5

(gdb) cont

Continuing.

Please enter the height!

10

The surface area is 471.238905.
The volume is 785.398175.
Program exited normally.

(gdb) quit

%

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

31

Debugging

» Source-level Debugger gdb (continued)

— Navigating the stack
= step
— steps into a function call
« finish
— continues execution until the current function has returned
= where
— shows where in the function call hierarchy you are
— prints a back trace of current stack frames
e up
— steps up one stack frame (up into the caller)
= down
— steps down one stack frame (down into the callee)

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

32

(c) 2014 R. Doemer

Lecture 9

16

EECS22: Advanced C Programming

Debugging

» Navigating Stack Frames in the Debugger

* step: execute and step into a funct
, : navigate stack frames

ion call

« finish: resume execution until the end of the current function

(0]
N K
%) . .
X pi() pi() 1 Stack Frame
) < y
w Cd
CircleP 2rimeter() CircleArea()
finish v
A
step | Surface() Volume()
main()
Time

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 33

Debugging

« Example session: Cylinder.c (part 1/4)

% vi Cylinder.c

% gcc Cylinder.c -o Cylinder -Wall —ansi -g
% gdb Cylinder

GNU gdb 6.3

(gdb) break 55

Breakpoint 1 at 0x108d0: file Cylinder.c, line 55.

(gdb) run

Starting program: /users/faculty/doemer/eecs10/Cylinder/Cylinder

Please enter the radius: 10
Please enter the height: 10
Breakpoint 1, main () at Cylinder.c:56

56 s = Surface(r, h);

(gdb) step

Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;
(gdb) step

CirclePerimeter (r=10) at Cylinder.c:24
24 return(2 * pi(QQ * r);

EEL """

(c) 2014 R. Doemer

Lecture 9

17

EECS22: Advanced C Programming

Debugging

« Example session: Cylinder.c (part 2/4)

(gdb) step

pi (O at Cylinder.c:14

14 return(3.1415927);

(gdb) where

#0 pi () at Cylinder.c:14

#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24
#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31
#3 0x000108e0 in main () at Cylinder.c:56

(gdb) up
#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24
24 return(2 * piQQ * r);
(gdb) up
#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31
31 side = CirclePerimeter(r) * h;
(gdb) up
#3 0x000108e0 in main () at Cylinder.c:56
56 s = Surface(r, h);
EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 35

Debugging

« Example session: Cylinder.c (part 3/4)

(gdb) down

#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31
31 side = CirclePerimeter(r) * h;

(gdb) down

#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24
24 return(2 * pi(QQ * r);

(gdb) down

#0 pi () at Cylinder.c:14

14 return(3.1415927);

(gdb) finish

Run till exit from #0 pi () at Cylinder.c:14

0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi(QQ * r);

Value returned is $1 = 3.1415926999999999

(gdb) finish

Run till exit from #0 CirclePerimeter (r=10) at Cylinder.c:24
0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

EEL """

(c) 2014 R. Doemer

Lecture 9

18

EECS22: Advanced C Programming

Debugging

« Example session: Cylinder.c (part4/4)

Value returned is $2 = 62.831854

(gdb) next

32 lid = CircleArea(r);

(gdb) step

CircleArea (r=10) at Cylinder.c:19

19 return(piQ) * r * r);

(gdb) finish

Run till exit from #0 CircleArea (r=10) at Cylinder.c:19
0x00010818 in Surface (r=10, h=10) at Cylinder.c:32

32 lid = CircleArea(r);

Value returned is $3 = 314.15926999999999
(gdb) cont

Continuing.

The surface area is 1256.637080.
The volume is 3141.592700.
Program exited normally.

(gdb) quit

%

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 37

Debugging

» Source-level Debugger gdb (continued)

— Inspecting the stack
= info frame
— displays information about the current stack frame
« info locals
— lists the local variables in the current function (current stack frame)
= info scope function
— lists the variables in the scope of the specified function
— Calling functions (outside of the regular control flow)
« call function(arguments)
— calls the specified function with the specified arguments
— Assembly level inspection
- info registers
— lists the CPU registers and their contents
= disassemble function
— disassembles the function and lists its assembly code

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 38

(c) 2014 R. Doemer

Lecture 9

19

EECS22: Advanced C Programming

Debugging

» Source-level Debugger gdb (continued)

— Inspecting and modifying variable values
e print variable_name
— prints the current value of the variable variable_name
= set variable = value
— sets the specified variable to the specified value
display variable
— prints the value of a variable each time before the next command
= info display
— lists information on the displayed variables
undisplay variable
— turns off the display of the specified variable

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 39

Debugging

» Source-level Debugger gdb (continued)

— Advanced commands for using break points
= info breakpoints
— displays information about break points
tbreak function_name (or file:line_number)
— inserts a temporary breakpoint (valid only once)
watch variable
— sets a watch point on the specified variable for write access
= rwatch variable
— sets a watch point on the specified variable for read access
ignore breakpoint n
— skips the specified break point n times
enable (or disable) breakpoint (or watchpoint)
— Enables (or disables) a break point (or watch point)
e condition breakpoint condition
— Specifies a condition for the given break point

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 40

(c) 2014 R. Doemer

Lecture 9

20

EECS22: Advanced C Programming

Debugging

+ Data Display Debugger ddd
— Graphical frontend for gdb

* Requires X forwarding and corresponding client
(e.g. Xming in addition to Putty)

_ Provides menu bar # DOD: /usersAaculty/doemer/eecs22/lectured/Cylinder.c

File Edt View Program Commands Sfalus Source Dala

=@ =

and command buttons ofordrost B & BT 2n s an 5

Run| Interrupt| Stap| Stapi| Mext| Nexti] Unti| Finish| Cont] Kill| Up| Down| Undo| 7eda| Eait] Make|

— Displays separate

work windows

Graphical display area ~r

A2 ﬁrm;f(Plpas: §mr the radiust\n®); ;
for data structures 2 princfCeleise enter the heishnn;

sz
Source code browser g femmmmmee

57 /* output sectio
58 printf("The surfa(s area is %f.\n", s);

[» 55 v o= Uolume(r, h)

(gdb) graph display s
{adb) break &yTinder

+ Assembly code browser
* Command |Ine Interface (gdh) s:‘ggkzc L D;:?ﬂgha file Cylinder.c, line 5S.
— Example: Cylinder.c B i 1 e e

Bre: 006ba: file Cylinder.c, line 55.
\ Gadoy lvar Cylindar.e: 58
[IEE]EEBIH breakpoints 2 3 4

A Deleted breakpoints 2 3 4

D= —

| —

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer

41

(c) 2014 R. Doemer

Lecture 9

21

