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Lecture 9: Overview

• Warm-up Quiz

• Course Administration
– Midterm course evaluation

• Assertions
– Using and disabling assertions

• Debugging
– Source-level debugger gdb

– Running a program under debugger control

– Navigating and inspecting the stack

– Inspecting and modifying variable values

– Advanced commands for using break points
– Data display debugger ddd
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Quiz: Question 11

• Today’s computers run at which clock 
speed?
a) 85 MPH

b) 1 kHz

c) 1 ms

d) 1 GHz

e) 1 MHz
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Quiz: Question 12

• Which of the following names are valid 
keywords in ANSI C?
(Check all that apply!)
a) if

b) when

c) void

d) main

e) Int
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Quiz: Question 13

• Which of the following names are valid 
identifiers in ANSI C?
(Check all that apply!)
a) xyz

b) PC

c) dollar amount

d) My_Very_Long_Variable_Name

e) 2fast4you
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Quiz: Question 14

• Which of the following constructs are valid 
type names in ANSI C?
(Check all that apply!)
a) short char

b) long double

c) signed long long

d) unsigned float

e) signed
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Quiz: Question 15

• Which of the following constants
is of type double?
(Check all that apply!)
a) 42

b) .42

c) 4e2

d) 4E2

e) 42f
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Quiz: Question 16

• What is the value of the integer x
after the following statement?

a) Syntax Error!

b) 3

c) 6

d) 12

e) 321

x = 3 << 2 >> 1;

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 14

Quiz: Question 16

• What is the value of the integer x
after the following statement?

a) Syntax Error!

b) 3

c) 6

d) 12

e) 321

x = 3 << 2 >> 1;



EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 8

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 15

Quiz: Question 17

• Which of the following expressions correctly 
computes the polynomial                           ? 
(Check all that apply!)
a) p = 2x^2 – 3x + 4;

b) p = 2xx – 3x + 4;

c) p = x*x*2 – 3*x + 4.0;

d) p = 2*(x*x + 3)*x + 4;

e) p = (2*x – 3)*x + 4;

p = 2 x2 – 3x +4
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Quiz: Question 18

• What is the result of the evaluation of the 
following expression?

a) 123456

b) true

c) false

d) 1

e) 0

1 == 2 || 3 < 4 && 5 > 6
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Quiz: Question 19

• Simple prime number test:
The following code fragment iterates variable i over
the range 2 ≤ i < x to find a divisor of x.
What should go into
box 1 in line 4?
a) i = 0;

b) i = 1;

c) i = 2;

d) i = x;

e) x = 0;

int x, i;
printf("Please input a number: ");
scanf("%d", &x);
initialize variable i
while(i < x)
{ if(x % i == 0)
{ printf("%d is not prime\n", x);
break;

}
i++;

}
if( none of the i is a divisor of x )
{ printf("%d is prime\n", x);
}
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Quiz: Question 20

• Simple prime number test:
The following code fragment iterates variable i over
the range 2 ≤ i < x to find a divisor of x.
What should go into
box 2 in line 12?
a) x / i == 0

b) x < i

c) i / x == 0

d) i + 1 == x

e) i == x
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Course Administration

• Midterm Course Evaluation
– One week, starting this Sunday!

– Sunday, Nov. 2, noon – Sunday, Nov. 9, noon

– Online via EEE Evaluation application

• Feedback from students to instructors
– Completely voluntary

– Completely anonymous

– Very valuable
• Help to improve this class!

• Mandatory Final Course Evaluation
– expected for week 10 (TBA)

Assertions

• Run-time Checks for Diagnostics and Debugging
– Can be manually implemented

– Can be enabled at time of compilation (for development)

– Can be disabled at time of compilation (for final release)
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...
#ifdef DEBUG
if (value > 100)

{ printf(“Something’s wrong, value is >100!”);
abort();

} /* fi */
#endif /* DEBUG */
...

% gcc –DDEBUG program.c –o program
%

% gcc program.c –o program
%
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Assertions

• Assertions: Diagnostics by the standard C library

– Header file  assert.h
• Defines assert(condition) (as a preprocessor macro)

– Assertion failure
• At run-time, if condition evaluates to false,

the program is aborted with a corresponding diagnostic message

– Disabling assertions
• If NDEBUG is defined when assert.h is included,

the assert() macro is ignored (empty statement)
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#include <assert.h>
...
assert(value <= 100);

assertion: program.c:12: main: Assertion `value <= 100' failed.
Abort

% gcc –DNDEBUG program.c –o program
%

• Example: Square Root Calculation Root.c

– Assertion protects contract between caller and callee
• Caller is in charge of ensuring positive argument to function call

• Callee relies on this agreement (otherwise the loop will not terminate!)

#include <assert.h>

double Root(double x) /* square root approximation */
{   double l, m, r, d;

assert(x >= 0.0); /* caller must supply positive x */
l = 0.0; r = x;
do{ m = l + (r-l)/2.0;

d = m * m - x;
if (d < 0.0)
{ d = -d;
l = m; }

else
{ r = m; }

} while (d > 1e-10);
return m;

}

Assertions
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Assertions

• Advise on Using Assertions
 Use assertions often

• Confirm assumptions about parameters, calculated values, etc.

• Assertions are cheap (low run-time overhead)!

 Use assertions from beginning during software development
• Diagnostic messages are very helpful in development

– Program aborts as soon as a value is out of expected range

– Location and problem condition are shown

• This can avoid more serious problems later

 Disable assertions for final program delivered to the user
• Diagnostic messages are of no use to the end user!

– User has no idea about condition and source location

 Beware of side-effects in assertions
• Implemented as a macro!

• Can lead to Heisenbugs which disappear when debugging is on!
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Debugging

• Source-level Debugger gdb
– Debugging features

• run the program under debugger control

• follow the control flow of the program during execution

• set breakpoints to stop execution at specific points

• inspect (and adjust) the values of variables

• find the point in the program where the “crash” happens

– Preparation:
compile your program with debugging support on

• Option –g tells compiler to add debugging information 
(symbol tables) to the generated executable file

• gcc –g Program.c –o Program –Wall -ansi

• gdb Program
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Debugging

• Source-level Debugger gdb
– Running the program under debugger control

• run
– starts the execution of the program in the debugger

• break function_name (or file:line_number)
– inserts a breakpoint; program execution will stop at the breakpoint

• cont
– continues the execution of the program in the debugger

• list from_line_number,to_line_number
– lists the current or specified range of line_numbers

• print variable_name
– prints the current value of the variable variable_name

• next
– executes the next statement (one statement at a time)

• quit
– exits the debugger (and terminates the program)

• help
– provides helpful details on debugger commands
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Debugging

• Example session: Cylinder.c (part 1/2)
% vi Cylinder.c

% gcc Cylinder.c -Wall -ansi -o Cylinder -g

% gdb Cylinder

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-37.el5_7.1)

Copyright (C) 2009 Free Software Foundation, Inc.

...

Reading symbols from 
/users/faculty/doemer/eecs22/lecture10/Cylinder...done.

(gdb) break main

Breakpoint 1 at 0x400654: file Cylinder.c, line 48.

(gdb) run

Starting program: /users/faculty/doemer/eecs22/lecture10/Cylinder

Breakpoint 1, main () at Cylinder.c:48

48          printf("Please enter the radius!\n");

(gdb) next

Please enter the radius!

49 scanf("%lf", &r);

...
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Debugging

• Example session: Cylinder.c (part 2/2)
...

(gdb) next

5

50          printf("Please enter the height!\n");

(gdb) print r

$1 = 5

(gdb) cont

Continuing.

Please enter the height!

10

The surface area is 471.238905.

The volume is 785.398175.

Program exited normally.

(gdb) quit

%
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Debugging

• Source-level Debugger gdb (continued)
– Navigating the stack

• step
– steps into a function call

• finish
– continues execution until the current function has returned

• where
– shows where in the function call hierarchy you are
– prints a back trace of current stack frames

• up
– steps up one stack frame (up into the caller)

• down
– steps down one stack frame (down into the callee)
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Debugging

• Navigating Stack Frames in the Debugger
• step: execute and step into a function call

• up, down: navigate stack frames

• finish: resume execution until the end of the current function

main()

Surface()

CirclePerimeter()

pi()

CircleArea()

Volume()

pi() 1 Stack Frame

step

up down finish
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Debugging

• Example session: Cylinder.c (part 1/4)
% vi Cylinder.c

% gcc Cylinder.c -o Cylinder -Wall –ansi -g

% gdb Cylinder

GNU gdb 6.3

(gdb) break 55

Breakpoint 1 at 0x108d0: file Cylinder.c, line 55.

(gdb) run

Starting program: /users/faculty/doemer/eecs10/Cylinder/Cylinder

Please enter the radius: 10

Please enter the height: 10

Breakpoint 1, main () at Cylinder.c:56

56          s = Surface(r, h);

(gdb) step

Surface (r=10, h=10) at Cylinder.c:31

31          side = CirclePerimeter(r) * h;

(gdb) step

CirclePerimeter (r=10) at Cylinder.c:24

24          return(2 * pi() * r);

...
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Debugging

• Example session: Cylinder.c (part 2/4)
(gdb) step

pi () at Cylinder.c:14

14          return(3.1415927);

(gdb) where

#0  pi () at Cylinder.c:14

#1  0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

#2  0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

#3  0x000108e0 in main () at Cylinder.c:56

(gdb) up

#1  0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24          return(2 * pi() * r);

(gdb) up

#2  0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31          side = CirclePerimeter(r) * h;

(gdb) up

#3  0x000108e0 in main () at Cylinder.c:56

56          s = Surface(r, h);

...
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Debugging

• Example session: Cylinder.c (part 3/4)
(gdb) down

#2  0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31          side = CirclePerimeter(r) * h;

(gdb) down

#1  0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24          return(2 * pi() * r);

(gdb) down

#0  pi () at Cylinder.c:14

14          return(3.1415927);

(gdb) finish

Run till exit from #0  pi () at Cylinder.c:14

0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24          return(2 * pi() * r);

Value returned is $1 = 3.1415926999999999

(gdb) finish

Run till exit from #0  CirclePerimeter (r=10) at Cylinder.c:24

0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31          side = CirclePerimeter(r) * h;

...
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Debugging

• Example session: Cylinder.c (part 4/4)
Value returned is $2 = 62.831854

(gdb) next

32          lid  = CircleArea(r);

(gdb) step

CircleArea (r=10) at Cylinder.c:19

19          return(pi() * r * r);

(gdb) finish

Run till exit from #0  CircleArea (r=10) at Cylinder.c:19

0x00010818 in Surface (r=10, h=10) at Cylinder.c:32

32          lid  = CircleArea(r);

Value returned is $3 = 314.15926999999999

(gdb) cont

Continuing.

The surface area is 1256.637080.

The volume is 3141.592700.

Program exited normally.

(gdb) quit

%

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 38

Debugging

• Source-level Debugger gdb (continued)
– Inspecting the stack

• info frame
– displays information about the current stack frame

• info locals
– lists the local variables in the current function (current stack frame)

• info scope function
– lists the variables in the scope of the specified function

– Calling functions (outside of the regular control flow)
• call function(arguments)

– calls the specified function with the specified arguments

– Assembly level inspection
• info registers

– lists the CPU registers and their contents
• disassemble function

– disassembles the function and lists its assembly code
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Debugging

• Source-level Debugger gdb (continued)
– Inspecting and modifying variable values

• print variable_name
– prints the current value of the variable variable_name

• set variable = value
– sets the specified variable to the specified value

• display variable
– prints the value of a variable each time before the next command

• info display
– lists information on the displayed variables

• undisplay variable
– turns off the display of the specified variable
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Debugging

• Source-level Debugger gdb (continued)
– Advanced commands for using break points

• info breakpoints
– displays information about break points

• tbreak function_name (or file:line_number)
– inserts a temporary breakpoint (valid only once)

• watch variable
– sets a watch point on the specified variable for write access

• rwatch variable
– sets a watch point on the specified variable for read access

• ignore breakpoint n
– skips the specified break point n times

• enable (or disable) breakpoint (or watchpoint)
– Enables (or disables) a break point (or watch point)

• condition breakpoint condition
– Specifies a condition for the given break point
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Debugging

• Data Display Debugger ddd
– Graphical frontend for gdb

• Requires X forwarding and corresponding client
(e.g. Xming in addition to Putty)

– Provides menu bar
and command buttons

– Displays separate
work windows

• Graphical display area
for data structures

• Source code browser

• Assembly code browser

• Command line interface

– Example: Cylinder.c
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