
EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 9

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 2

Lecture 9: Overview

• Warm-up Quiz

• Course Administration
– Midterm course evaluation

• Assertions
– Using and disabling assertions

• Debugging
– Source-level debugger gdb

– Running a program under debugger control

– Navigating and inspecting the stack

– Inspecting and modifying variable values

– Advanced commands for using break points
– Data display debugger ddd

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 2

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 3

Quiz: Question 11

• Today’s computers run at which clock
speed?
a) 85 MPH

b) 1 kHz

c) 1 ms

d) 1 GHz

e) 1 MHz

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 4

Quiz: Question 11

• Today’s computers run at which clock
speed?
a) 85 MPH

b) 1 kHz

c) 1 ms

d) 1 GHz

e) 1 MHz

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 3

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 5

Quiz: Question 12

• Which of the following names are valid
keywords in ANSI C?
(Check all that apply!)
a) if

b) when

c) void

d) main

e) Int

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 6

Quiz: Question 12

• Which of the following names are valid
keywords in ANSI C?
(Check all that apply!)
a) if

b) when

c) void

d) main

e) Int

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 4

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 7

Quiz: Question 13

• Which of the following names are valid
identifiers in ANSI C?
(Check all that apply!)
a) xyz

b) PC

c) dollar amount

d) My_Very_Long_Variable_Name

e) 2fast4you

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 8

Quiz: Question 13

• Which of the following names are valid
identifiers in ANSI C?
(Check all that apply!)
a) xyz

b) PC

c) dollar amount

d) My_Very_Long_Variable_Name

e) 2fast4you

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 5

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 9

Quiz: Question 14

• Which of the following constructs are valid
type names in ANSI C?
(Check all that apply!)
a) short char

b) long double

c) signed long long

d) unsigned float

e) signed

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 10

Quiz: Question 14

• Which of the following constructs are valid
type names in ANSI C?
(Check all that apply!)
a) short char

b) long double

c) signed long long

d) unsigned float

e) signed

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 6

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 11

Quiz: Question 15

• Which of the following constants
is of type double?
(Check all that apply!)
a) 42

b) .42

c) 4e2

d) 4E2

e) 42f

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 12

Quiz: Question 15

• Which of the following constants
is of type double?
(Check all that apply!)
a) 42

b) .42

c) 4e2

d) 4E2

e) 42f

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 7

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 13

Quiz: Question 16

• What is the value of the integer x
after the following statement?

a) Syntax Error!

b) 3

c) 6

d) 12

e) 321

x = 3 << 2 >> 1;

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 14

Quiz: Question 16

• What is the value of the integer x
after the following statement?

a) Syntax Error!

b) 3

c) 6

d) 12

e) 321

x = 3 << 2 >> 1;

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 8

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 15

Quiz: Question 17

• Which of the following expressions correctly
computes the polynomial ?
(Check all that apply!)
a) p = 2x^2 – 3x + 4;

b) p = 2xx – 3x + 4;

c) p = x*x*2 – 3*x + 4.0;

d) p = 2*(x*x + 3)*x + 4;

e) p = (2*x – 3)*x + 4;

p = 2 x2 – 3x +4

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 16

Quiz: Question 17

• Which of the following expressions correctly
computes the polynomial ?
(Check all that apply!)
a) p = 2x^2 – 3x + 4;

b) p = 2xx – 3x + 4;

c) p = x*x*2 – 3*x + 4.0;

d) p = 2*(x*x + 3)*x + 4;

e) p = (2*x – 3)*x + 4;

p = 2 x2 – 3x +4

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 9

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 17

Quiz: Question 18

• What is the result of the evaluation of the
following expression?

a) 123456

b) true

c) false

d) 1

e) 0

1 == 2 || 3 < 4 && 5 > 6

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 18

Quiz: Question 18

• What is the result of the evaluation of the
following expression?

a) 123456

b) true

c) false

d) 1

e) 0

1 == 2 || 3 < 4 && 5 > 6

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 10

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 19

Quiz: Question 19

• Simple prime number test:
The following code fragment iterates variable i over
the range 2 ≤ i < x to find a divisor of x.
What should go into
box 1 in line 4?
a) i = 0;

b) i = 1;

c) i = 2;

d) i = x;

e) x = 0;

int x, i;
printf("Please input a number: ");
scanf("%d", &x);
initialize variable i
while(i < x)
{ if(x % i == 0)
{ printf("%d is not prime\n", x);
break;

}
i++;

}
if(none of the i is a divisor of x)
{ printf("%d is prime\n", x);
}

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 20

Quiz: Question 19

• Simple prime number test:
The following code fragment iterates variable i over
the range 2 ≤ i < x to find a divisor of x.
What should go into
box 1 in line 4?
a) i = 0;

b) i = 1;

c) i = 2;

d) i = x;

e) x = 0;

int x, i;
printf("Please input a number: ");
scanf("%d", &x);
initialize variable i
while(i < x)
{ if(x % i == 0)
{ printf("%d is not prime\n", x);
break;

}
i++;

}
if(none of the i is a divisor of x)
{ printf("%d is prime\n", x);
}

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 11

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 21

Quiz: Question 20

• Simple prime number test:
The following code fragment iterates variable i over
the range 2 ≤ i < x to find a divisor of x.
What should go into
box 2 in line 12?
a) x / i == 0

b) x < i

c) i / x == 0

d) i + 1 == x

e) i == x

int x, i;
printf("Please input a number: ");
scanf("%d", &x);
initialize variable i
while(i < x)
{ if(x % i == 0)
{ printf("%d is not prime\n", x);
break;

}
i++;

}
if(none of the i is a divisor of x)
{ printf("%d is prime\n", x);
}

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 22

Quiz: Question 20

• Simple prime number test:
The following code fragment iterates variable i over
the range 2 ≤ i < x to find a divisor of x.
What should go into
box 2 in line 12?
a) x / i == 0

b) x < i

c) i / x == 0

d) i + 1 == x

e) i == x

int x, i;
printf("Please input a number: ");
scanf("%d", &x);
initialize variable i
while(i < x)
{ if(x % i == 0)
{ printf("%d is not prime\n", x);
break;

}
i++;

}
if(none of the i is a divisor of x)
{ printf("%d is prime\n", x);
}

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 12

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 23

Course Administration

• Midterm Course Evaluation
– One week, starting this Sunday!

– Sunday, Nov. 2, noon – Sunday, Nov. 9, noon

– Online via EEE Evaluation application

• Feedback from students to instructors
– Completely voluntary

– Completely anonymous

– Very valuable
• Help to improve this class!

• Mandatory Final Course Evaluation
– expected for week 10 (TBA)

Assertions

• Run-time Checks for Diagnostics and Debugging
– Can be manually implemented

– Can be enabled at time of compilation (for development)

– Can be disabled at time of compilation (for final release)

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 24

...
#ifdef DEBUG
if (value > 100)

{ printf(“Something’s wrong, value is >100!”);
abort();

} /* fi */
#endif /* DEBUG */
...

% gcc –DDEBUG program.c –o program
%

% gcc program.c –o program
%

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 13

Assertions

• Assertions: Diagnostics by the standard C library

– Header file assert.h
• Defines assert(condition) (as a preprocessor macro)

– Assertion failure
• At run-time, if condition evaluates to false,

the program is aborted with a corresponding diagnostic message

– Disabling assertions
• If NDEBUG is defined when assert.h is included,

the assert() macro is ignored (empty statement)

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 25

#include <assert.h>
...
assert(value <= 100);

assertion: program.c:12: main: Assertion `value <= 100' failed.
Abort

% gcc –DNDEBUG program.c –o program
%

• Example: Square Root Calculation Root.c

– Assertion protects contract between caller and callee
• Caller is in charge of ensuring positive argument to function call

• Callee relies on this agreement (otherwise the loop will not terminate!)

#include <assert.h>

double Root(double x) /* square root approximation */
{ double l, m, r, d;

assert(x >= 0.0); /* caller must supply positive x */
l = 0.0; r = x;
do{ m = l + (r-l)/2.0;

d = m * m - x;
if (d < 0.0)
{ d = -d;
l = m; }

else
{ r = m; }

} while (d > 1e-10);
return m;

}

Assertions

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 26

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 14

Assertions

• Advise on Using Assertions
 Use assertions often

• Confirm assumptions about parameters, calculated values, etc.

• Assertions are cheap (low run-time overhead)!

 Use assertions from beginning during software development
• Diagnostic messages are very helpful in development

– Program aborts as soon as a value is out of expected range

– Location and problem condition are shown

• This can avoid more serious problems later

 Disable assertions for final program delivered to the user
• Diagnostic messages are of no use to the end user!

– User has no idea about condition and source location

 Beware of side-effects in assertions
• Implemented as a macro!

• Can lead to Heisenbugs which disappear when debugging is on!

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 27

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 28

Debugging

• Source-level Debugger gdb
– Debugging features

• run the program under debugger control

• follow the control flow of the program during execution

• set breakpoints to stop execution at specific points

• inspect (and adjust) the values of variables

• find the point in the program where the “crash” happens

– Preparation:
compile your program with debugging support on

• Option –g tells compiler to add debugging information
(symbol tables) to the generated executable file

• gcc –g Program.c –o Program –Wall -ansi

• gdb Program

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 15

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 29

Debugging

• Source-level Debugger gdb
– Running the program under debugger control

• run
– starts the execution of the program in the debugger

• break function_name (or file:line_number)
– inserts a breakpoint; program execution will stop at the breakpoint

• cont
– continues the execution of the program in the debugger

• list from_line_number,to_line_number
– lists the current or specified range of line_numbers

• print variable_name
– prints the current value of the variable variable_name

• next
– executes the next statement (one statement at a time)

• quit
– exits the debugger (and terminates the program)

• help
– provides helpful details on debugger commands

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 30

Debugging

• Example session: Cylinder.c (part 1/2)
% vi Cylinder.c

% gcc Cylinder.c -Wall -ansi -o Cylinder -g

% gdb Cylinder

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-37.el5_7.1)

Copyright (C) 2009 Free Software Foundation, Inc.

...

Reading symbols from
/users/faculty/doemer/eecs22/lecture10/Cylinder...done.

(gdb) break main

Breakpoint 1 at 0x400654: file Cylinder.c, line 48.

(gdb) run

Starting program: /users/faculty/doemer/eecs22/lecture10/Cylinder

Breakpoint 1, main () at Cylinder.c:48

48 printf("Please enter the radius!\n");

(gdb) next

Please enter the radius!

49 scanf("%lf", &r);

...

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 16

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 31

Debugging

• Example session: Cylinder.c (part 2/2)
...

(gdb) next

5

50 printf("Please enter the height!\n");

(gdb) print r

$1 = 5

(gdb) cont

Continuing.

Please enter the height!

10

The surface area is 471.238905.

The volume is 785.398175.

Program exited normally.

(gdb) quit

%

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 32

Debugging

• Source-level Debugger gdb (continued)
– Navigating the stack

• step
– steps into a function call

• finish
– continues execution until the current function has returned

• where
– shows where in the function call hierarchy you are
– prints a back trace of current stack frames

• up
– steps up one stack frame (up into the caller)

• down
– steps down one stack frame (down into the callee)

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 17

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 33

S
ta

ck
 S

iz
e

Time

Debugging

• Navigating Stack Frames in the Debugger
• step: execute and step into a function call

• up, down: navigate stack frames

• finish: resume execution until the end of the current function

main()

Surface()

CirclePerimeter()

pi()

CircleArea()

Volume()

pi() 1 Stack Frame

step

up down finish

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 34

Debugging

• Example session: Cylinder.c (part 1/4)
% vi Cylinder.c

% gcc Cylinder.c -o Cylinder -Wall –ansi -g

% gdb Cylinder

GNU gdb 6.3

(gdb) break 55

Breakpoint 1 at 0x108d0: file Cylinder.c, line 55.

(gdb) run

Starting program: /users/faculty/doemer/eecs10/Cylinder/Cylinder

Please enter the radius: 10

Please enter the height: 10

Breakpoint 1, main () at Cylinder.c:56

56 s = Surface(r, h);

(gdb) step

Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

(gdb) step

CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi() * r);

...

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 18

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 35

Debugging

• Example session: Cylinder.c (part 2/4)
(gdb) step

pi () at Cylinder.c:14

14 return(3.1415927);

(gdb) where

#0 pi () at Cylinder.c:14

#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

#3 0x000108e0 in main () at Cylinder.c:56

(gdb) up

#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi() * r);

(gdb) up

#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

(gdb) up

#3 0x000108e0 in main () at Cylinder.c:56

56 s = Surface(r, h);

...

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 36

Debugging

• Example session: Cylinder.c (part 3/4)
(gdb) down

#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

(gdb) down

#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi() * r);

(gdb) down

#0 pi () at Cylinder.c:14

14 return(3.1415927);

(gdb) finish

Run till exit from #0 pi () at Cylinder.c:14

0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi() * r);

Value returned is $1 = 3.1415926999999999

(gdb) finish

Run till exit from #0 CirclePerimeter (r=10) at Cylinder.c:24

0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

...

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 19

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 37

Debugging

• Example session: Cylinder.c (part 4/4)
Value returned is $2 = 62.831854

(gdb) next

32 lid = CircleArea(r);

(gdb) step

CircleArea (r=10) at Cylinder.c:19

19 return(pi() * r * r);

(gdb) finish

Run till exit from #0 CircleArea (r=10) at Cylinder.c:19

0x00010818 in Surface (r=10, h=10) at Cylinder.c:32

32 lid = CircleArea(r);

Value returned is $3 = 314.15926999999999

(gdb) cont

Continuing.

The surface area is 1256.637080.

The volume is 3141.592700.

Program exited normally.

(gdb) quit

%

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 38

Debugging

• Source-level Debugger gdb (continued)
– Inspecting the stack

• info frame
– displays information about the current stack frame

• info locals
– lists the local variables in the current function (current stack frame)

• info scope function
– lists the variables in the scope of the specified function

– Calling functions (outside of the regular control flow)
• call function(arguments)

– calls the specified function with the specified arguments

– Assembly level inspection
• info registers

– lists the CPU registers and their contents
• disassemble function

– disassembles the function and lists its assembly code

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 20

Debugging

• Source-level Debugger gdb (continued)
– Inspecting and modifying variable values

• print variable_name
– prints the current value of the variable variable_name

• set variable = value
– sets the specified variable to the specified value

• display variable
– prints the value of a variable each time before the next command

• info display
– lists information on the displayed variables

• undisplay variable
– turns off the display of the specified variable

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 39

Debugging

• Source-level Debugger gdb (continued)
– Advanced commands for using break points

• info breakpoints
– displays information about break points

• tbreak function_name (or file:line_number)
– inserts a temporary breakpoint (valid only once)

• watch variable
– sets a watch point on the specified variable for write access

• rwatch variable
– sets a watch point on the specified variable for read access

• ignore breakpoint n
– skips the specified break point n times

• enable (or disable) breakpoint (or watchpoint)
– Enables (or disables) a break point (or watch point)

• condition breakpoint condition
– Specifies a condition for the given break point

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 40

EECS22: Advanced C Programming Lecture 9

(c) 2014 R. Doemer 21

Debugging

• Data Display Debugger ddd
– Graphical frontend for gdb

• Requires X forwarding and corresponding client
(e.g. Xming in addition to Putty)

– Provides menu bar
and command buttons

– Displays separate
work windows

• Graphical display area
for data structures

• Source code browser

• Assembly code browser

• Command line interface

– Example: Cylinder.c

EECS22: Advanced C Programming, Lecture 9 (c) 2014 R. Doemer 41

