
EECS 22: Assignment 1

Prepared by: Che-Wei Chang, Prof. Rainer Dömer

Octorber, 2 2014

Due Tuesday 14 Oct 2014 at 11:00pm

1 Part1: Login to your Linux account
For this class, you will be doing your assignments by logging on to a shared machine (server) running the Linux
operating system. Even though you may be using a personal computer or a workstation that is capable of computation
locally, you will mainly be using them as terminals (clients), whose job is to pass keystrokes to the server and display
outputs from the server.

To use a shared machine, first you need an account on the machine. EECS support has created an account for each
student. To retrieve the username and password go to the following website:
https://newport.eecs.uci.edu/account.py.
The website asks for your UCInetID and the according password before giving you the account information of your
new EECS account. Note that your browser may also ask you to accept a certificate to open the secure website. If you
have a problem please contact your EECS 22 TA, (eecs22@eecs.uci.edu).

The names of the instructional servers are zuma.eecs.uci.edu and crystalcove.eecs.uci.edu You
can log into your account with your EECS user name and password. Your account also comes with a certain amount
of disk space. You can use this space to store homework assignment files, and you don’t need to bring your own disks
or other storage media.

1.1 Software and commands for remote login
You can connect to zuma.eecs.uci.edu or crystalcove.eecs.uci.edu from virtually any computer any-
where that has internet access. What you need is a client program for remote login.

Previously, people used rlogin or telnet to connect to the server, and ftp or rcp to transfer files. However,
these protocols are insecure, because your keystrokes or output are in clear text and can be snooped by others. This
means your account name and password can be stolen this way. So, for security reasons, do not use either of these
programs.

Instead, use ssh as the primary way to connect to the server. ssh stands for secure shell, and it encrypts your
network communication, so that your data cannot be understood by snoopers. For file transfers, use sftp or scp,
which are secure.

Depending on what computer you use, it may have a different implementation of ssh, but the basic function
underneath are all the same. Check the course web site on SSH:
https://eee.uci.edu/11f/18056/resources.html

• If you are logging in from a Windows machine, you can use SecureCRT or PuTTY.

• MacOS X already has this built-in (use Terminal or X11 to run a Linux shell). Most Linux distributions also
bundle ssh.

• If you are logging in from an X terminal, you can use the command
% ssh zuma.eecs.uci.edu -X -l yourUserName
(note: % is the prompt, not part of your command) It will prompt you for your password. Note that the -X option
allows you to run programs that open X windows on your screen.

1

https://newport.eecs.uci.edu/account.py
https://eee.uci.edu/11f/18056/resources.html

1.2 Linux Shell
By now you should be logged in, and you should be looking at the prompt
zuma% _

Note: in the following writeup, we will show just
%
for the prompt, instead of
zuma%

You should change your password using the yppasswd command.
Try out the following commands at the shell prompt (See reference to the Linux Guide in section 1.3 for more

details about these commands.).
ls list files
cd (change working directory)
pwd (print working directory)
mkdir (make directory)
mv (rename/move files)
cp (copy files)
rm (remove files)
rmdir (remove directory)
cat (print the content of a file)
more (print the content of a file, one screen at a time)
echo (print the arguments on the rest of the command line)

Most commands take one or more file names as parameters. When referring to files, you may need to qualify the
file name with directory references, absolute vs. relative paths:

. (current directory)

.. (one level higher)
˜ (home directory)
/ the root (top level) directory

1.3 Follow the Linux Guide
The best bet may be to search online for something like ”linux user tutorial,” ”linux user guide,” ”unix command line”
or ”unix shell command” and check a few results to see what is agreeable to you. From those links, the following may
be reasonable:
http://linux.org.mt/article/terminal
http://www.linux-tutorial.info/modules.php?name=MContent&pageid=49
or ftp://metalab.unc.edu/pub/Linux/docs/linux-doc-project/users-guide/user-beta-1.
pdf.zip (3.3.1-2, and chapter 4)
Learn basic shell commands: list files, change directory, rename files, move files, copy files, show file content.

There is nothing to turn in for this part.

2 Learn to use a text editor
There are three editors that are available on nearly all Linux systems that you may choose from.
pico is the easiest to get started with. A guide for pico can be found at:
http://www.dur.ac.uk/resources/its/info/guides/17Pico.pdf.
vi is a very powerful editor, but is arguably a bit more difficult to learn. Follow the vi guide at:
http://dcssrv1.oit.uci.edu/indiv/gdh/vi/vi-SunWorld-article.html
or http://www.ece.uci.edu/∼chou/vi.html
Finally, emacs is another editor that you may use. emacs is also a powerful editor, but is a bit easier to learn than
vi. Follow the emacs guide at:

2

http://linux.org.mt/article/terminal
http://www.linux-tutorial.info/modules.php?name=MContent&pageid=49
ftp://metalab.unc.edu/pub/Linux/docs/linux-doc-project/users-guide/user-beta-1.pdf.zip
ftp://metalab.unc.edu/pub/Linux/docs/linux-doc-project/users-guide/user-beta-1.pdf.zip
http://www.dur.ac.uk/resources/its/info/guides/17Pico.pdf
http://dcssrv1.oit.uci.edu/indiv/gdh/vi/vi-SunWorld-article.html
http://www.ece.uci.edu/~chou/vi.html

http://www.gnu.org/software/emacs/tour/.

Learn how to edit a file, move the cursor, insert text, insert text from file, delete words, delete lines, cut/paste, save
changes, save to another file, quit without saving.

There is nothing to turn in for this part. However, it is critical that you get enough practice with your editor, so that
you can do the homework for this class.

3 Part 2: Blackjack (100 points)
This is a Blackjack program. The idea is to simulate Blackjack in order to make programming more fun! ;-)

Here is the overview of the implementation: To simulate the shuffled stack of cards, we use a pseudo random number
generator that generates a random number in the range of 1 to 13. This represents the cards numbered 1 through 10,
plus the jack, queen and king, respectively. If the card number is 1 to 10, it directly represents the value of the card. If
the card number is 11 to 13, the card represents the jack, queen, and king, which all have the face value 10.

Player’s round: The dealer draws an initial card for the player and shows it. The player then can choose to draw
additional cards as many times as he wants. If his cards have a combined value of more than 21, he loses immediately.
If the player decides not to draw any more cards, it’s the dealer’s turn.

The interface should look like the following:

** Welcome to EECS22 BlackJack! **

Your first card is: 7
Do you want another card?
Type 1 for Yes, 0 for No: 1
Your next card is: 8
Your combined value is: 15
Do you want another card?
Type 1 for Yes, 0 for No: 1
Your next card is: 9
Your combined value is: 24
Sorry. You lose!

Dealer’s round: The dealer draws his own cards until he reaches one of the following conditions: If his combined
value reaches more than 21, the dealer loses. If his combined value is the same as the player’s value, the dealer wins.
If his combined value is higher than the player’s value, the dealer wins. An example code is shown below:

** Welcome to EECS22 BlackJack! **

Your first card is: 7
Do you want another card?
Type 1 for Yes, 0 for No: 1
Your next card is: 8
Your combined value is: 15
Do you want another card?
Type 1 for Yes, 0 for No: 0
Dealer draws another card.
Dealer’s card is: 10
Dealer’s value is 10, you have 15.

3

http://www.gnu.org/software/emacs/tour/

Dealer draws another card.
Dealer’s card is: 4
Dealer’s value is 14, you have 15.
Dealer draws another card.
Dealer’s card is: 10
Dealer’s value is 24, you have 15.
Dealer loses. You win!

You should submit your program code as file blackjack.c, a text file blackjack.txt briefly explaining how
you designed your program, and a typescript blackjack.script which shows that you compile and run your
program. Please run it twice so that the script shows that you and the dealer win one time each.

HINT: To generate the initial random number, you have to use a random number generator which is provided by
the C standard function rand(). This function generates a random number of type int in the range of 0 to 32767. This
function is provided in the header file stdlib.h.

In practice, no computer function can produce truly random data; they only produce pseudo-random numbers. These
are computed from the formula and the number sequences they produce are repeatable. A seed value is usually used
by the random number generator to generate a number. Therefore, if you use the same seed value all the time, the
same sequence of ”random” numbers will be generated (i.e. your program will always produce the same ”random”
number in every program run). To avoid this, we can use the current time of the day to set the random seed, as this
will always be changing with every program run. With this trick, your program will produce different numbers every
time you run it.

To set the seed value, you have to use the function srand(), which is also defined in the header file stdlib.h. For
the current time of the day, you can use the function time(), which is defined in the header file time.h (stdlib.h
and time.h are header files just like the stdio.h file that we have been using so far).

In summary, use the following code fragments to generate the random number for the game:

1. Include the stdlib.h and time.h header files at the beginning of your program:
#include <stdlib.h>
#include <time.h>

2. Include the following lines at the beginning of your main function:
/* initialize the random number generator with the current time */
srand(time(NULL));

3. To simulate drawing a card from the shuffled deck, use the following statement:
/* draw a random card */
card = rand() % 13 + 1; // You need to define the variable card.

The integer variable ’card’ then will have a random value in the range from 1 through 13.

3.1 Writing your code
First create a subdirectory named hw1 (for homework one). Change into the created directory hw1. Then, use your
editor to create a C file named blackjack.c. Do not use a word processor and transfer or paste the content. The C
file should state your name and exercise number as a comment at the top of the file.

3.2 Compiling your code
To test your program, it must be compiled with the gcc command. This command will report any errors in your code.
To call gcc, use the following template:

4

% gcc sourcefile -o targetfile
Then, simply execute the compiled file by typing the following:
% ./targetfile
Note: Please compile your C code using -ansi -Wall options as below to specify ANSI code with all warnings:

Below is an example of how you would compile and execute your program for ”Guess the number” game:
% gcc blackjack.c -ansi -Wall -o blackjack
% ./blackjack
program executes
% _

4 Bonus Problem
Extend the blackjack program. To make the game more real, for each ace card (1), the player can choose the value to be
either 1 or 11 for best interest. The decision can only be made once the card is issued and cannot be changed afterwards.

To submit, use the same files as in Part 2, i.e. blackjack.c, blackjack.txt, and blackjack.script.

5 Submission
To submit your work, you have to be logged in the server zuma or crystalcove.

Here is a checklist of the files you should have:

In the hw1 directory, you should have the following files in your linux account:

• blackjack.c

• blackjack.txt

• blackjack.script

We do require these exact file names. If you use different file names, we will not see your files for grading. Now, you
should change the current directory to the directory containing the hw1 directory. Then type the command:
% /ecelib/bin/turnin22
which will guide you through the submission process.
You will be asked if you want to submit the script file. Type yes or no. If you type “n” or “y” or just plain return,
they will be ignored and be taken as a no. You can use the same command to update your submitted files until the
submission deadline.
Below is an example of how you would submit your homework:

% ls # This step is just to make sure that you are in the correct directory that contains hw1/
hw1/
% /ecelib/bin/turnin22
==
EECS 22 Fall 2014:
Assignment "hw1" submission for eecs22
Due date: Tue Oct 14 23:00:00 2014

** Looking for files:

** blackjack.c

** blackjack.txt

** blackjack.script

5

==

* Please confirm the following: *
* "I have read the Section on Academic Honesty in the *
* UCI Catalogue of Classes (available online at *
* http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0) *
* and submit myoriginal work accordingly." *
Please type YES to confirm. Y
==
File blackjack.c exists, overwrite? [yes, no] y
File blackjack.c has been overwritten
Submit blackjack.txt [yes, no]? y
File blackjack.txt has been submitted
Submit blackjack.script [yes, no]? y
File blackjack.script has been submitted
==
Summary:
==
Submitted on Mon Sep 29 17:00:21 2014
You just submitted file(s):
blackjack.c
blackjack.txt
blackjack.script
% _

5.1 Verify your submission
This step is optional, but recommended. If you want to confirm which files you have submitted, call the following
command:
% /users/grad2/doemer/eecs22/bin/listfiles.py

This command lists your submitted files. Don’t worry if you submitted too many files. We will only look at the
files with defined names (here: blackjack.c, blackjack.txt and blackjack.script) and ignore other
files.

6 Typescript
A typescript is a text file that captures an interactive session with the Linux shell. Very often you are required to turn
in a typescript to show that your program runs correctly. To create a typescript, use the script command. Here is an
example:

• Type the command
% script
into the shell. It should say
Script started, file is typescript
% _
This means it is recording every key stroke and every output character into a file named “typescript”, until you
hit ˆD or type exit.

• Type some shell commands. But don’t start a text editor!

• Stop recording the typescript by typing exit.
% exit
Script done, file is typescript
% _

6

• Now you should have a text file named typescript. Make sure it looks correct.
% more typescript
Script started on Mon 29 Sep 2014 04:58:45 PM PDT
...
...

You should immediately rename the typescript to another file name. Otherwise, if you run script again, it will
overwrite the typescript file.

Note: If you backspace while in script, it will show the ˆH (control-H) character in your typescript. This is nor-
mal. If you use more to view the typescript, then it should look normal.

7

	Part1: Login to your Linux account
	Software and commands for remote login
	Linux Shell
	Follow the Linux Guide

	Learn to use a text editor
	Part 2: Blackjack (100 points)

