
EECS 22: Assignment 4

Prepared by: Manjunath Venkatesh, Prof. Rainer Doemer

November 6, 2014

Due on Tuesday 11/25/2014 11:00pm. Note: this is a two-week assignment.

1 Digital Image Processing [100 points + 10 bonus points]
In this assignment, you will learn how to use dynamic memory allocation in your program and how to link against
libraries. Based on the program PhotoLab for Assignment 3, you will redesign your digital image processing (DIP)
operations to accommodate varying image sizes. Then, you will add more DIP operations whose resulting images will
differ in size compared to the original one. Thus you can use your PhotoLab program to perform the DIP operations
on any of your own pictures.

1.1 Introduction
In Assignment 3, you were asked to decompose your PhotoLab program into separate modules and compile them into
different programs. There were 2 main programs. In the first, the user could load an image from a file, apply a set
of DIP operations to the image, and save the processed image in a file by running the PhotoLab application by hand.
The second was the same as the first except that the DEBUG option was turned on for the compiler. This version of
PhotoLab displayed more messages to the user and performed all the DIP operations automatically. This assignment
will be an extension of Assignment 3.

1.2 Initial Setup
Before you start working on this assignment, do the following:

cd ˜/eecs22
mkdir hw4
cd hw4
cp /users/grad2/doemer/eecs22/hw4/RingMall.ppm .
cp /users/grad2/doemer/eecs22/hw4/Spider.ppm .
cp /users/grad2/doemer/eecs22/hw4/Peter.ppm .
cp /users/grad2/doemer/eecs22/hw4/FileIO.h .
cp /users/grad2/doemer/eecs22/hw4/FileIO.c .
cp /users/grad2/doemer/eecs22/hw4/Image.h .

We will extend the PhotoLab program based on Assignment 3. Please reuse your PhotoLab.c file or the provided
PhotoLab.c solution as the starting point for this assignment. You may need to copy PhotoLab.c from the hw3 folder
or course website to hw4 first. Copy all the source code files (*.c) and the header files (*.h) to hw4 except FileIO.h
and FileIO.c Copy the new header and source file for File I/O from the /users/grad2/doemer/eecs22/hw4/ account.
Here,

• Image.h is the header file for the definition of the new structure and declarations of the pixel mapping functions
we will use in Section 1.3.2;

1

• FileIO.h is the new header file for File I/Os (ReadImage() and SaveImage()).

• FileIO.c is the new source file for File I/Os (ReadImage() and SaveImage()).

NOTE:
Again, we will use the PPM image file RingMall.ppm for this assignment. Once a DIP operation is done, you can save
the modified image as name.ppm, and it will be automatically converted to a JPEG image and sent to the folder pub-
lic html in your home directory. You are then able to see the image in any web browser at: http://newport.eecs.uci.edu/∼youruserid,
if required names are used. If you save images by other names, use the link http://newport.eecs.uci.edu/∼youruserid/imagename.jpg
to access the photo.

Note that whatever you put in the public html directory will be publicly accessible; make sure you don’t put files there
that you don’t want to share, i.e. do not put your source code into that directory.

1.3 Add support for different image sizes
In this assignment, we will add support for DIP operations on images with different sizes. In the previous two assign-
ments, our programs defined two constants WIDTH and HEIGHT as the fixed size of the input image. At that time,
our PhotoLab program could only manipulate images with the fixed size of 640x500.

In order to add support for varying image sizes, we need to redefine the size of the arrays that we use to store the
color intensity information for each pixels. Since the size of the input image cannot be determined at compile time,
we cannot use arrays to hold the pixel information. Therefore, we need to use dynamic memory allocation to claim
three blocks of memory whose size will be decided at program run time.

Instead of defining three arrays and passing them as the arguments to the DIP operation functions, we will now use
pointers to point to an image structure which be dynamically allocated in memory by our program at run time.

1.3.1 Use pointers in one dimensional memory space instead of arrays with two dimensions

We need to use dynamic memory allocation since the size of the image will not be known until we run the program.
We will use three pointers to type unsigned char for the color intensity values for each pixel instead of three fixed
sized arrays. However, pointers only point to a memory space in one dimension. Therefore, we need to map 2-tuple
coordinates of pixels to a single value index corresponding to the pixel color information in memory.

For example, we have an image of size 10x5, and three pixels (0, 0), (9, 4), and (6, 4). We assume row major for the
image storage in this program. Therefore, the index value for pixel (0, 0) in the one dimensional storage space will be
0; the index value for pixel (9, 4) in the one dimensional storage space will be 49 = 9+4∗10; and the index value for
pixel (6, 4) in the one dimensional storage space will be 46 = 6+4∗10.

In general, the index value for the pixel (x, y) in an image of size WIDTHxHEIGHT in the one dimensional storage
space will be x + y * WIDTH.

1.3.2 The Image.c module

Please add one module Image (see provided Image.h) to handle basic operations on the image.

• The IMAGE struct: We will use a struct type to aggregate all the information of an image. The following struct
is defined in Image.h:

typedef struct {
unsigned int Width; /* image width */
unsigned int Height; /* image height */
unsigned char *R; /* pointer to the memory storing all the R intensity values */
unsigned char *G; /* pointer to the memory storing all the G intensity values */
unsigned char *B; /* pointer to the memory storing all the B intensity values */

2

}IMAGE;

• Define the functions to get and set the value of the color intensities of each pixel in the image. Please use the
following function prototypes (provided in Image.h) and define the functions properly (in Image.c).

/* Get the color intensity of the Red channel of pixel (x, y) in image */
unsigned char GetPixelR(IMAGE *image, unsigned int x, unsigned int y);

/* Get the color intensity of the Green channel of pixel (x, y) in image */
unsigned char GetPixelG(IMAGE *image, unsigned int x, unsigned int y);

/* Get the color intensity of the Blue channel of pixel (x, y) in image */
unsigned char GetPixelB(IMAGE *image, unsigned int x, unsigned int y);

/* Set the color intensity of the Red channel of pixel (x, y) in image with value r */
void SetPixelR(IMAGE *image, unsigned int x, unsigned int y, unsigned char r);

/* Set the color intensity of the Green channel of pixel (x, y) in image with value g */
void SetPixelG(IMAGE *image, unsigned int x, unsigned int y, unsigned char g);

/* Set the color intensity of the Blue channel of pixel (x, y) in image with value b */
void SetPixelB(IMAGE *image, unsigned int x, unsigned int y, unsigned char b);

The mapping from the 2-tuple coordinates (x, y) to the single index value for the one dimensional memory space
will be taken care of in these functions. Please call these functions in your DIP functions for setting / getting the
intensity values of the pixels.

• Please add assertions in these functions to make sure the input image pointer is valid, and the set of pointers to
the memory spaces for the color intensity values are valid too. Last but not least, add assertions to ensure that
the coordinates are within the valid ranges for the image.

• Please extend/adjust your Makefile accordingly: 1) add the target to generate Image.o and 2) add Image.o when
generating PhotoLab and PhotoLabTest.

1.3.3 Read and save image files

You may refer to FileIO.h for the defined functions for file I/Os.

• IMAGE *ReadImage(const char *fname): reads the file with the name fname.ppm and returns the image
pointer. The color intensities for channel red, green, and blue are stored in the memory spaces pointed to by
member pointers R, G and B of the returned IMAGE pointer respectively. The memory space of the image is
created in this function by a function call to CreateImage(), see below.

NOTE: This function returns NULL if loading the image failed. Be sure to handle this error.

• int SaveImage(const char *fname, IMAGE *image): saves the color intensities of each red, green, and blue
channel stored in the memory spaces pointed to by member pointers R, G and B of image into the file with the
name fname.ppm. This function returns an error code if something went wrong. Handle it by letting the user
know that the image was not saved.

Please write two functions to handle the memory allocations and deallocations in Image.c (Functions declared in Im-
age.h).

Please use the following function prototypes.

/* allocate the memory space for the image structure */
/* and the memory spaces for the color intensity values. */

3

/* return the pointer to the image, or NULL in case of error */
IMAGE *CreateImage(unsigned int Width, unsigned int Height);

/* release the memory spaces for the pixel color intensity values */
/* deallocate all the memory spaces for the image */
void DeleteImage(IMAGE *image);

IMPORTANT: Note that the ReadImage() function in the FileIO library needs the CreateImage() function to allocate
the memory space! Therefore, you will need to define the CreateImage() function correctly before you can use the
ReadImage() function.

1.3.4 Modify function prototypes and definitions

Most of our functions need to be refined by taking the IMAGE structure as a parameter which contains all the infor-
mation about the image.

Your DIP function prototypes should look like below:

• In DIPs.h:

/* change color image to black & white */
IMAGE *BlackNWhite(IMAGE *image);

/* mirror image horizontally */
IMAGE *HMirror(IMAGE *image);

/* Add a border to the image */
IMAGE *AddBorder(IMAGE *image, char color[SLEN], int border_width);

/* flip image vertically */
IMAGE *VFlip(IMAGE *image);

/* color filter */
IMAGE *ColorFilter(IMAGE *image, int target_r, int target_g, int target_b,

int threshold, int replace_r, int replace_g, int replace_b);

/* edge detection */
IMAGE *Edge(IMAGE *image);

/* shuffle the image */
IMAGE *Shuffle(IMAGE *image);

• In Advanced.h:

/*Posterize Image*/
IMAGE *Posterize(IMAGE *image, unsigned int pbits);

/* FillLight to image */
IMAGE *FillLight(IMAGE *image, int number, int lightWidth);

/* Overlay with another image */
IMAGE *Overlay(char fname[SLEN],

IMAGE *image,
int x_offset,
int y_offset);

4

/* Perform Cut Paste operations on the image*/
IMAGE* CutPaste(IMAGE *image,

unsigned int startX,
unsigned int startY,
unsigned int x_width,
unsigned int y_width, unsigned int pasteNumber);

IMPORTANT: Notice the changes made to the return types and the function arguments!
NOTE: By using pointers in one dimensional memory space, you need to modify the statements in your functions for
array elements’ indexing with the pixel setting / getting functions accordingly. For example:

• In Assignment 3, we got the pixel’s color value by indexing the element from the two-dimensional array:
tmpR = R[x][y];

• Now, we need to get the pixel’s color value by calling the getting function:
tmpR = GetPixelR(image, x, y);

• In Assignment 3, we set the pixel’s color value by indexing the element from the two-dimensional array:
R[x][y] = ...;

• Now, we need to set the pixel’s color value by calling the setting function:
SetPixelR(image, x, y, ...);

By using the setting / getting functions, we can keep the two-dimensional coordinate system as in Assignment 2 and
Assignment 3.

Please make sure to include the header file Image.h properly in your source code files and header files.

1.3.5 Modify the AutoTest function

Please put the File I/O and memory allocations inside the AutoTest(IMAGE *image) function. The only parameter this
function will take is an IMAGE struct. Please refer to Section 1.5 for more implementation details.

1.3.6 Modify the Makefile to link against the library

Your own Makefile should have at least the following targets:

• all: the target to generate the executable program.

• clean: the target to clean up all the intermediate files, e.g. object files, the executable programs, and the generated
ppm files.

• *.o: the target to generate the object file *.o from the C source code file *.c.

• PhotoLab: the target to generate the executable program PhotoLab.

• PhotoLabTest: the target to generate the executable program PhotoLabTest.

It is recommended to have a few more targets as they will help decompose the structure of your makefile. Compile
your source code into PhotoLab and PhotoLabTest by using your Makefile:

make all

HINT: There are two ways to link against a library (.a) file:

1. use it as a normal object file with full name.

2. use the -l option of gcc to specify which library to use (e.g. -lfileio means using the library libfileio.a), and the
-L option of gcc to specify the directory of the library.

The second option is the recommended one.

5

(a) New image
(144x168)

(b) Original overlay of Spider image at position (90, -10) (c) New overlay of Peter image at position (350, 300)

Figure 1: The new Peter image, overlay of original spider image and the new overlay image.

1.4 Advanced DIP operations
In this assignment, please implement the advanced DIP operations described below in Advanced.c (Advanced.h as
the header file).

Please reuse the menu you designed for Assignment 3 and extend it with the advanced operations. The user should be
able to select DIP operations from a menu as the one shown below:

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Flip an image vertically
5: Mirror an image horizontally
6: Color-Filter an image
7: Sketch the edge of an image
8: Shuffle an image
9: Posterize the image
10: Fill lights to an image
11: Overlay an image
12: Bonus, Cut and Paste operation on image
13: Resize the image
14: Rotate 90 degrees clockwise
15: Generate the Mandelbrot image
16: Bonus, Add border outside the image
17: Test all functions
18: Exit

Please make your choice:

1.4.1 Image Overlay

This function has been modified to take varying image sizes as input. In addition to the overlay picture in the previous
assignment, we will now add a second overlay image which is of smaller size. We will overlay the original Spider in
it’s original position (90, -10). We will overlay the smaller peter image at position (350, 300). Please turn in 2 overlay
images for this section.

6

(a) Original image (b) resized to a bigger image (percent-
age = 175)

(c) resized to a smaller im-
age (percentage = 60)

Figure 2: An image and its resized bigger and resized smaller counterparts.

Save the original overlay image with the name ’overlay spider’ after this step. Save the new overlay image with the
name ’overlay peter’ after this step.

1.4.2 Resize

You need to define and implement the following function for this DIP.

/*Resize*/
IMAGE *Resize(unsigned int percentage, IMAGE *image);

This function resizes the image with the scale of percentage.

• percentage == 100, the size of the new image is the same as the original one.

• percentage < 100, the size of the new image is smaller than the original one.

• percentage > 100, the size of the new image is larger than the original one.

More specifically, we scale percentage as follows:

• Widthnew = Widthold * (percentage / 100.00);

• Heightnew = Heightold * (percentage / 100.00);

If percentage is greater than 100, we need to duplicate some pixels from the original image to the new larger one.
Assume (x′, y′) are the coordinates for the position of the pixel in the new image while (x, y) are the coordinates for
the position of the pixel in the original image. Then, copy the color of the pixel(x, y) in the original image to pixel (x′,
y′) in the new image Note that:

x’ = x * (percentage / 100.00);
y’ = y * (percentage / 100.00);

If percentage is less than 100, we will have fewer pixels in the new smaller image than in the original image. There-
fore, we need to average the values of the color intensities of multiple pixels from the original image. Otherwise, we
lose too much information from the original image. We use this average value as the color intensity of the pixel in the
smaller image.

To demonstrate, each grid element represents one pixel in the image, as shown in Figure 3. We average the value of
the color intensities for all the red edged pixels in the original image (from (x1, y1) to (x2− 1, y2− 1)) and use this
average as the red color intensity of the pixel (x, y) in the new image, where:

7

Figure 3: Pixels mapping from the bigger original image to the smaller new image

x1 = x / (percentage / 100.00);
y1 = y / (percentage / 100.00);
x2 = (x + 1) / (percentage / 100.00);
y2 = (y + 1) / (percentage / 100.00);

If percentage is greater than 100, there are more pixels in the target image than in the original. Thus, some pixel colors
will be duplicated in the result.

HINT: For enlarging the image, it is easier to iterate over the target image (not over the original image).
NOTE: The Resize() function will consume the input image and return a new image with the new size. Please delete
and create the image data structures properly in this function.

Figure 2 shows an example of this operation. Once the user chooses this option, your program’s output should like
this:

Please make your choice: 13
Please input the resizing percentage (integer between 1˜500): 175
"Resizing the image" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Flip an image vertically
5: Mirror an image horizontally
6: Color-Filter an image
7: Sketch the edge of an image
8: Shuffle an image
9: Posterize the image
10: Fill lights to an image
11: Overlay an image
12: Bonus, Cut and Paste operation on image
13: Resize the image
14: Rotate 90 degrees clockwise
15: Generate the Mandelbrot image
16: Bonus, Add border outside the image
17: Test all functions
18: Exit

Please make your choice:

Save the two images for this operation:

1. ’bigresize’: a bigger image with scale percentage = 175.

2. ’smallresize’: a smaller image with scale percentage = 60.

8

(a) Original image (b) Rotated image

Figure 4: An image and its rotated counterpart.

1.4.3 Rotate-90-degree

This function rotates the image by 90 degrees clockwise. The size of the image will be the same, but the width (height)
of the new image will be the same as its original height (width).

NOTE: As shown in Fig. 5, row pixel indices increase as they go down while the column pixel indices increase as
they go to the right. Pixel indices are integer values ranging from 1 to the length of the row or column. The top left
pixel’s coordinate is (0, 0), and the bottom right pixel’s coordinate is (image→Width - 1, image→Height - 1).

First, you need to find how the pixel coordinates map from the original image (x, y) to the rotated image (x′, y′). Then,
you need to set the color of the pixel at (x′, y′) in the new image to the color of the pixel at (x, y) in the original image.

You need to define and implement the following function to do this DIP.

/*Rotate 90 degrees clockwise*/
IMAGE *Rotate(IMAGE *image);

Figure 4 shows an example of this operation. Once the user chooses this option, your program’s output should like
this:

Please make your choice: 14
"Rotate 90 degree clockwise" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Flip an image vertically
5: Mirror an image horizontally
6: Color-Filter an image
7: Sketch the edge of an image
8: Shuffle an image

9

(a) Coordinates for the original image (b) Coordinates for the rotated image

Figure 5: An image and its rotated counterpart.

9: Posterize the image
10: Fill lights to an image
11: Overlay an image
12: Bonus, Cut and Paste operation on image
13: Resize the image
14: Rotate 90 degrees clockwise
15: Generate the Mandelbrot image
16: Bonus, Add border outside the image
17: Test all functions
18: Exit

Please make your choice:

Save the image with the name ’rotate’ after this step.

1.4.4 Image for the Mandelbrot Set

The Mandelbrot set is a mathematical set of points whose boundary is a distinctive and easily recognizable two-
dimensional fractal shape. Images of the Mandelbrot set display an elaborate boundary that reveals progressively
ever-finer recursive detail at increasing magnifications. The Mandelbrot set has become popular outside mathematics
both for its aesthetic appeal and as an example of a complex structure arising from the application of simple rules,
and is one of the best-known examples of mathematical visualization. (http://en.wikipedia.org/wiki/
Mandelbrot_set)
We are going to write a function to generate an image of the Mandelbrot set in this assignment.

• The algorithm for drawing a picture of the Mandelbrot set
In this DIP operation, we will try to translate the pseudo code of the Mandelbrot set drawing algorithm into C
program.

A lot of real-world programming work requires the programmer to reuse the source code that are written by
the others and adjust accordingly to fit into the current project. The reference source code can have different
function prototypes, different variable types, and even be written in different programming languages or just
pseudo codes. While the reference code provides the base control flow to implement the major behavior of the
functions, programmers need to translate the reference code to their working language and build the interfaces

10

http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set

for integration.

As stated on the wikipedia webpage, the pseudo code of the Mandelbrot set drawing algorithm looks like as
follows:

1: For each pixel on the screen do:
2: {
3: x0 = scaled x coordinate of pixel within the range of (-2.5, 1)
4: (must be scaled to lie somewhere in the mandelbrot X scale (-2.5, 1)
5: y0 = scaled y coordinate of pixel within the range of (-1, 1)
6: (must be scaled to lie somewhere in the mandelbrot Y scale (-1, 1)
7:
8: x = 0
9: y = 0

10:
11: iteration = 0
12: max_iteration = 1000
13:
14: while (x*x + y*y < 2*2 AND iteration < max_iteration)
15: {
16: xtemp = x*x - y*y + x0
17: y = 2*x*y + y0
18:
19: x = xtemp
20:
21: iteration = iteration + 1
22: }
23:
24: color = iteration
25:
26: plot(x0,y0,color)
27: }

Here is a brief explanation for this algorithm. The algorithm computes the color for each pixels in the picture
based one their coordinates. First, the coordinates of the pixel will be scaled as listed in line 3-6. The x coor-
dinate will be scaled to fall into the range of (-2.5, 1), and the y coordinate will be scaled to fall into the range
of (-1, 1). After several initializations, the algorithm starts a while loop to do some computation. The iterations
of the loop is decided by the value of x*x+y*y and a constant value stored in max iteration as the maximum
boundary for the loops. The color of the pixel is decided by the actual number of the iterations. The plot()
function will draw the pixel(x, y) with the color that is determined by the loop iterations.

To implement this algorithm in C, we need to define variables with proper types and design the scaling equations.

Moreover, we need to specific the actual color that is represented by a specific iteration number. We suggest to
use 16 colors in the Mandelbrot image. Thus, we first change line 24 into color = iteration %16, and then use
the variable color as the index to get the color intensity values from an array palette for different colors.

The following definition can be used in the C program:

1. In Advance.h

#define MAX_COLOR 16

2. Use the following array definition for the color palette:

11

(a) max iteration = 1000 (b) max iteration = 1500 (c) max iteration = 2000 (d) max iteration = 2500

Figure 6: Images for the Mandelbrot set with different number of iterations.

const unsigned char palette[MAX_COLOR][3] = {
/* r g b*/
{ 0, 0, 0 }, /* 0, black */
{ 127, 0, 0 }, /* 1, brown */
{ 255, 0, 0 }, /* 2, red */
{ 255, 127, 0 }, /* 3, orange */
{ 255, 255, 0 }, /* 4, yellow */
{ 127, 255, 0 }, /* 5, light green */
{ 0, 255, 0 }, /* 6, green */
{ 0, 255, 127 }, /* 7, blue green */
{ 0, 255, 255 }, /* 8, turquoise */
{ 127, 255, 255 }, /* 9, light blue */
{ 255, 255, 255 }, /* 10, white */
{ 255, 127, 255 }, /* 11, pink */
{ 255, 0, 255 }, /* 12, light pink */
{ 127, 0, 255 }, /* 13, purple */
{ 0, 0, 255 }, /* 14, blue */
{ 0, 0, 127 } /* 15, dark blue */

};

• Function Prototype
You need to define and implement the following function to do this DIP.

/*Mandelbrot*/
IMAGE *Mandelbrot(unsigned int W, unsigned int H, unsigned int max_iteration);

Here, W is the width of the generated image, H is the height of the image, and max iteration is the maximum
iterations for the computation of each pixel. This function will create an image, fill in the pixels with different
colors according to the Mandelbrot drawing algorithm, and return this image at the end.

Once user chooses this option, your program’s output should be like:

Please make your choice: 15
Please input the width of the mandelbrot image: 720
Please input the height of the mandelbrot image: 538
Please input the max iteration for the mandelbrot calculation: 2000
"Mandelbrot" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Flip an image vertically

12

(a) Original image (Size: 640x500) (b) Border image(Size: 660x520)

Figure 7: The original image and the image with border width 10 and color black

5: Mirror an image horizontally
6: Color-Filter an image
7: Sketch the edge of an image
8: Shuffle an image
9: Posterize the image
10: Fill lights to an image
11: Overlay an image
12: Bonus, Cut and Paste operation on image
13: Resize the image
14: Rotate 90 degrees clockwise
15: Generate the Mandelbrot image
16: Bonus, Add border outside the image
17: Test all functions
18: Exit

Please make your choice:

Fig. 6 shows four Mdandelbrot images with different computation iterations.

Save the image with the name “mandelbrot” after this step.

1.4.5 BONUS: Add border outside the image

This function adds border outside the image. The output image should be a bigger image containing border and the
original image. User should specify the color and width of the border, your application should take these information
and create a new image with specified property. Application should support following border colors : black, white,
red, green, blue, yellow, cyan, pink, and orange.

You need to define and implement the following function to do this DIP.

/* BONUS : Add outer border */
IMAGE *AddOuterBorder(IMAGE *image, char color[SLEN], int border_width);

13

Figure 7 shows an example of this operation. Once the user chooses this option, your program’s output should like
this:

Please make your choice: 16
Enter border width:10
Available border colors : black, white, red, green, blue, yellow, cyan, pink, orange
Select border color from the options: black
"Outer Border" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Flip an image vertically
5: Mirror an image horizontally
6: Color-Filter an image
7: Sketch the edge of an image
8: Shuffle an image
9: Posterize the image
10: Fill lights to an image
11: Overlay an image
12: Bonus, Cut and Paste operation on image
13: Resize the image
14: Rotate 90 degrees clockwise
15: Generate the Mandelbrot image
16: Bonus, Add border outside the image
17: Test all functions
18: Exit

Please make your choice:

Save the image with the name ’outerborder’ after this step.

1.5 Test all functions
Finally, you are going to complete the AutoTest(IMAGE *image) function to test all functions (as in Assignment 3(. In
this function, you are going to call DIP functions one by one and store the results. The function is for the designer to
quickly test the program and should require no user intervention. You should supply all the necessary parameters for
testing. We will change the function signature for AutoTest(IMAGE *image) so that the creation and deletion of the
image will be taken care of inside this function.

The function should look like:

/* auto test*/
void AutoTest(IMAGE *image)
{
char fname[SLEN] = "RingMall";
char sname[SLEN];

image = ReadImage(fname);
BlackNWhite(image);
strcpy(sname, "bw");
SaveImage(sname, image);
printf("Black & White tested!\n\n");
DeleteImage(image);

...

14

image = ReadImage(fname);
strcpy(sname, "Peter");
image = Overlay(sname, image, 350, 300) ;
strcpy(sname, "overlay_peter");
SaveImage(sname, image) ;
printf("Overlay with same image sizes tested!\n\n");
DeleteImage(image);

/* one for overlay spider */
...

image = ReadImage(fname);
image = Resize(175, image);
SaveImage("bigresize", image);
printf("Resizing big tested!\n\n");
DeleteImage(image);

/* one for small resize */
...

image = ReadImage(fname);
image = Rotate(image);
SaveImage("rotate", image);
printf("Rotate 90 degrees clockwise tested!\n\n");
DeleteImage(image);

image = Mandelbrot(720, 538, 2000);
SaveImage("mandelbrot", image);
printf("Generate the mandelbrot image tested!\n\n");
DeleteImage(image);

image = ReadImage(fname);
image = AddOuterBorder(image, "black", 10) ;
strcpy(sname, "outerborder");
SaveImage(sname, image) ;
printf("Bonus : Outer border tested!\n\n");

}

Please hard-code ”RingMall” as the fname and pass an unallocated IMAGE struct to AutoTest(IMAGE *image) when
is called in the main function.
Your program output should look like the following:

crystalcove% ./PhotoLabTest
Please make your choice: 17
RingMall.ppm was read successfully!
bw.ppm was saved successfully.
bw.jpg was stored for viewing.
Black & White tested!

RingMall.ppm was read successfully!
vflip.ppm was saved successfully.
vflip.jpg was stored for viewing.
VFlip tested!

15

RingMall.ppm was read successfully!
hmirror.ppm was saved successfully.
hmirror.jpg was stored for viewing.
HMirror tested!

RingMall.ppm was read successfully!
colorfilter.ppm was saved successfully.
colorfilter.jpg was stored for viewing.
Color Filter tested!

RingMall.ppm was read successfully!
edge.ppm was saved successfully.
edge.jpg was stored for viewing.
Edge Detection tested!

RingMall.ppm was read successfully!
shuffle.ppm was saved successfully.
shuffle.jpg was stored for viewing.
Shuffle tested

RingMall.ppm was read successfully!
poster.ppm was saved successfully.
poster.jpg was stored for viewing.
Posterize tested!

RingMall.ppm was read successfully!
light.ppm was saved successfully.
light.jpg was stored for viewing.
Fill Light tested!

RingMall.ppm was read successfully!
Spider.ppm was read successfully!
overlay_spider.ppm was saved successfully.
overlay_spider.jpg was stored for viewing.
overlay tested!

RingMall.ppm was read successfully!
Peter.ppm was read successfully!
overlay_peter.ppm was saved successfully.
overlay_peter.jpg was stored for viewing.
Overlay Tested!

RingMall.ppm was read successfully!
cutPaste.ppm was saved successfully.
cutPaste.jpg was stored for viewing.
Cut Paste Tested!

RingMall.ppm was read successfully!
bigresize.ppm was saved successfully.
bigresize.jpg was stored for viewing.
Resizing big tested!

RingMall.ppm was read successfully!

16

smallresize.ppm was saved successfully.
smallresize.jpg was stored for viewing.
Resizing small tested!

RingMall.ppm was read successfully!
rotate.ppm was saved successfully.
rotate.jpg was stored for viewing.
Rotate 90 degrees clockwise tested!

mandelbrot.ppm was saved successfully.
mandelbrot.jpg was stored for viewing.
Generate the mandelbrot image tested!

RingMall.ppm was read successfully!
outerborder.ppm was saved successfully.
outerborder.jpg was stored for viewing.
Bonus : Outer border tested!

1.6 Extend the Makefile
For the Makefile,

• extend and adjust it properly with targets for your program with the new module: Image.c.

• generate 2 executable programs

1. PhotoLab with the user interactive menu without the DEBUG statements.

2. PhotoLabTest, an executable that just calls AutoTest(IMAGE *image) function (in DEBUG mode).

Define two targets to generate these 2 programs respectively in addition to all and clean. You may define other
targets as needed.

1.7 Use “Valgrind” tool to Find Memory Leaks and Invalid Memory Accesses
Valgrind is a multipurpose code profiling and memory debugging tool for Linux. It allows you to run your program
in Valgrind’s own environment that monitors memory usage, such as calls to malloc and free. If you use uninitial-
ized memory, write over the end of an array, or forget to free a pointer, Valgrind will detect it. You may refer to
http://valgrind.org/ for more details about the Valgrind tool.

In this assignment, please use the following command to check the correctness of your memory usages

valgrind --leak-check=full program_name

If there is no problem with the memory usage in your program, you will see information similar to the following upon
completion of your program:

==xxxxx==
==xxxxx== HEAP SUMMARY:
==xxxxx== in use at exit: 0 bytes in 0 blocks
==xxxxx== total heap usage: 129 allocs, 129 frees, 20,476,437 bytes allocated
==xxxxx==
==xxxxx== All heap blocks were freed -- no leaks are possible
==xxxxx==
==xxxxx== For counts of detected and suppressed errors, rerun with: -v
==xxxxx== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)

17

http://valgrind.org/

You need to compile your program with the ”-g” option in gcc in order to enable detection of memory usage problems
in your program.
If there are problems with your program’s memory usage, Valgrind will provide you with information about the
problem and where to fix it.
For your final submission, your program should be free of warnings and free of any errors reported by Valgrind.

2 Implementation Details

2.1 Function Prototypes
For this assignment, you need to define the following functions in Advanced.h:

/*** function declarations ***/

...

/* Resize */
IMAGE *Resize(unsigned int percentage, IMAGE *image);

/* Rotate */
IMAGE *Rotate(IMAGE *image);

/* Mandelbrot */
IMAGE *Mandelbrot(unsigned int W, unsigned int H, unsigned int max_iteration);

/* BONUS : Add outer border */
IMAGE *AddOuterBorder(IMAGE *image, char color[SLEN], int border_width);

and in Image.h:

/*** function declarations ***/

/* Get the color intensity of the Red channel of pixel (x, y) in image */
unsigned char GetPixelR(IMAGE *image, unsigned int x, unsigned int y);

/* Get the color intensity of the Green channel of pixel (x, y) in image */
unsigned char GetPixelG(IMAGE *image, unsigned int x, unsigned int y);

/* Get the color intensity of the Blue channel of pixel (x, y) in image */
unsigned char GetPixelB(IMAGE *image, unsigned int x, unsigned int y);

/* Set the color intensity of the Red channel of pixel (x, y) in image with value r */
void SetPixelR(IMAGE *image, unsigned int x, unsigned int y, unsigned char r);

/* Set the color intensity of the Green channel of pixel (x, y) in image with value g */
void SetPixelG(IMAGE *image, unsigned int x, unsigned int y, unsigned char g);

/* Set the color intensity of the Blue channel of pixel (x, y) in image with value b */
void SetPixelB(IMAGE *image, unsigned int x, unsigned int y, unsigned char b);

/* allocate the memory space for the image structure */
/* and the memory spaces for the color intensity values. */
/* return the pointer to the image, or NULL in case of error */

18

IMAGE *CreateImage(unsigned int Width, unsigned int Height);

/* release the memory spaces for the pixel color intensity values */
/* deallocate all the memory spaces for the image */
void DeleteImage(IMAGE *image);

You may want to define other functions as needed.

2.2 Pass in the pointer of the struct IMAGE
In the main function, define the struct variable image of type IMAGE. It will contain the following image information:
Width, Height, pointers to the memory spaces for all the color intensity values of the R, G, B channels.
When any of the DIP operations are called in the main function, the address of this image variable is passed into the
DIP functions. This way, the DIP functions can access and modify the contents of this variable.
In your DIP function implementation, there are two ways to save the target image information. Both options work and
you should decide which option is better based on the specific DIP manipulation function at hand.

Option 1: using local variables You can define local variables of type IMAGE to save the target image information.
For example:

IMAGE *DIP_function_name(IMAGE *image)
{

IMAGE *image_tmp;

image_tmp = CreateImage(image->Width, image->Height);

...

DeleteImage(image_tmp);
image_tmp = NULL;
return image;

}

Make sure you create and delete the image space properly.
Then, at the end of each DIP function implementation, you can copy the data in image tmp over to image, or delete
the incoming image and return the new one.

Option 2: in place manipulation Sometimes you do not have to create new local array variables to save the target
image information. Instead, you can just manipulate on image.R, image.G, image.B directly. For example, in the
implementation of BlackAndWhite() function, you can assign the result pixel value directly back to the pixel entry.

NOTE: Please always call SetPixelR (SetPixelG, SetPixelB) function to set the pixel color value and GetPixelR
(GetPixelG, GetPixelB) function to read the pixel color value.

3 Budgeting your time
You have two weeks to complete this assignment, but we encourage you to get started early as there is more work than
Assignment 3. We suggest you budget your time as follows:

• Week 1:

1. Design the Image.c (Image.h as the header file) module.

2. Change the signature and definitions of the existing functions.

3. Modify the AutoTest(IMAGE *image) function.

19

4. Adjust the Makefile with the targets for the new module.

5. Implement one DIP function if possible.

• Week 2:

1. Implement all the advanced DIP functions.

2. Complete the AutoTest(IMAGE *image) function.

3. Use Valgrind to check memory usages. Fix the code if Valgrind complains about any errors.

4. Script the result of your programs and submit your work.

4 Script File
To demonstrate that your program works correctly, perform the following steps and submit the log as your script file:

1. Start the script by typing the command: typescript.

2. Compile and run PhotoLab by using your Makefile.

3. Choose a few functions to implement (The file names must be ’bw’, ..., ’overlay spider’, ’overlay peter’, ’bi-
gresize’, ’smallresize’, ’rotate’, ’mandelbrot’ for the corresponding functions).

4. Exit the program.

5. Compile and run PhotoLabTest by using your Makefile.

6. Run PhotoLabTest under the monitor of Valgrind.

7. Clean all the object files, generated .ppm files and executable programs by using your Makefile.

8. Stop the script by typing the command: exit.

9. Rename the script file to PhotoLab.script.

NOTE: make sure use exactly the same names as shown in the above steps when saving modified images! The script
file is important, and will be checked in grading; you must follow the above steps to create the script file. Please don’t
open any text editor while scripting !!!

5 Submission
Use the standard submission procedure to submit the following files as the whole package of your program:

• PhotoLab.c

• PhotoLab.script

• PhotoLab.txt

• Image.c

• Image.h

• Constants.h

• DIPs.c

• DIPs.h

• FileIO.c

20

• FileIO.h

• Advanced.c

• Advanced.h

• Makefile

Please leave the images generated by your program in your public html directory. Don’t delete them as we may
consider them when grading! You don’t have to submit any images.

21

	Digital Image Processing [100 points + 10 bonus points]
	Introduction
	 Initial Setup
	Add support for different image sizes
	Use pointers in one dimensional memory space instead of arrays with two dimensions
	The Image.c module
	Read and save image files
	Modify function prototypes and definitions
	Modify the AutoTest function
	Modify the Makefile to link against the library

	Advanced DIP operations
	 Image Overlay
	 Resize
	 Rotate-90-degree
	Image for the Mandelbrot Set
	 BONUS: Add border outside the image

	Test all functions
	Extend the Makefile
	Use ``Valgrind" tool to Find Memory Leaks and Invalid Memory Accesses

	 Implementation Details
	 Function Prototypes
	 Pass in the pointer of the struct IMAGE

	Budgeting your time
	 Script File
	Submission

