
EECS 22 : Assignment 4
DIGITAL IMAGE PROCESSING

DUE DATE: 11/25/2014 11:00PM

Presented by : Manjunath M Venkateshhttps://eee.uci.edu/14f/18030/

https://eee.uci.edu/14f/18030/

Static Memory Allocation

Memory allocation for image in project 3

Void int main()

{

unsigned char R[WIDTH][HEIGHT];

unsigned char G[WIDTH][HEIGHT];

unsigned char B[WIDTH][HEIGHT];

.

.

.

.

}

• Need to know WIDTH and HEIGHT before compiling
code

• WIDTH and HEIGH are static ! Cannot be change on
runtime (after compilation)

Compile time

Height

Width

Height

Height

R, G and B two
dimensional array
allocated on STACK
memory area by
compiler;

Height and Width
are static;

Limitations
Image size should be known before at compile time.

Not any image can be loaded for DIP operation.

Solution : Dynamic memory allocation
Allocate memory at runtime.

Need not know actual dimension at time of writing and compiling code.

• Malloc API allocates X number of bytes on HEAP memory at runtime, where X is passed as input parameter and
returns pointer to allocated memory

Dynamic Memory Allocation

Void int main()

{

char temp = 0;

unsigned char p* = Null;

p= malloc(10);

*p = 0; //same as *(p+0) = 0

*(p+1) = 1; // 2nd Byte

*(p+9) = 2; // 10th Byte

temp = *(p+9); // temp will have 2 in it

temp = (p+9); // temp will have address

to 10th memory byte

print(“%c”,*(p+9)); // will print 2;

}

P

Pointer

0

0 1

0 1 2

10 contiguous bytes of memory
*P

Value stored inside pointer

P+9Pointer to 10th

byte
*(P+9)

Value of 10th byte

Dynamic allocation of image data

Memory allocation in Project 4

Void int main()

{

unsigned char *R;

unsigned char *G;

unsigned char *B;

int WIDTH;

int HEIGHT;

.

/* Get height and width from user

and store in WIDTH and HEIGHT, local

variable */

R = (unsigned char *)malloc(WIDTH *

HEIGHT);

G = (unsigned char *)malloc(WIDTH *

HEIGHT);

B = (unsigned char *)malloc(WIDTH *

HEIGHT);

}

Runtime

WIDTH * HEIGHT

• One dimensional memory

Pixel access in dynamic image data
Project 3: (with static allocation)
(x, y)th pixel can be accessed as below

temp = R[x][y]; // two dimensional array

Project 4 : (with dynamic allocation)
• One dimensional byte access in case of dynamic memory allocated data
• Assuming row major data storage

Height

width

#Width pixel #Width pixel #Width pixel #Width pixel #Width pixel… …… ….

#width bytes is repeated #Height times
In memory

Assume R is pointer to allocated memory then any pixel in image can be accessed by

temp = *(R+(x + (y * Width)))

Encapsulate common information inside c “Structure”

Representing an Image

• We need following information to represent an Image

Unsigned int WIDTH;

Unsigned int HEIGHT;

Unsigned char *R;

Unsigned char *G;

Unsigned char *B;

• So new DIP functions should take following information
as formal parameter

• Example: BlackNWhite(WIDTH, HEIGHT,

R, G, B);

Better way

Struct IMAGE {

Unsigned int WIDTH;

Unsigned int HEIGHT;

Unsigned char *R;

Unsigned char *G;

Unsigned char *B;

}

• So new DIP functions shall take a pointer to structure of
type Image

• Example:

BlackNWhite(image);

Use this method for project 4

More information on “structure”

Struct IMAGE {

Unsigned int WIDTH;

Unsigned int HEIGHT;

Unsigned char *R;

Unsigned char *G;

Unsigned char *B;

}

Typedef struct{

Unsigned int WIDTH;

Unsigned int HEIGHT;

Unsigned char *R;

Unsigned char *G;

Unsigned char *B;

} IMAGE;

Example usage :
struct IMAGE *image; // defining pointer

image = (struct IMAGE *)malloc(sizeof(struct IMAGE));

Image->R = 0; // Accessing filed R of structure

Example usage :
IMAGE *image; // defining pointer

Image = (IMAGE *)malloc(sizeof(IMAGE));
Image->R = 0; // Accessing filed R of structure
Use this method for project 4

Refer Image.h file for more

information

equivalent

Note : -> : to access elements of a structure pointed by a pointer to that structure
sizeof(X) : Will return number bytes required to store element of type X

Freeing dynamic memory :

• Memory allocated using “malloc” should explicitly be freed using “Free”
• If not all memory is freed then application results in memory leak

• I.e every time you run your application un freed memory will become un
usable in the system.

Example :

char *p = malloc(10); // allocation

free(p); // freeing allocated memory

Implementation details :
Step 1 : Implement APIs specified in image.h file

GetPixelR

GetPixelG

GetPixelB

SetPixelR

SetPixelG

SetPixelB

CreateImage //Return type is pointer to structure IMAGE

DeleteImage // Should delete all dynamic memory

Note :
1. New FileIo.c file uses CreateImage API for its internal operation. Implement this carefully
2. Update Makefile to include Image.c
3. Hints for CreateImage :

• Allocate memory for image structure.

• Allocate memory for R, G and B.

• Store WIDTH and HEIGHT in structure;

• Return pointer to image structure;

Implementation details :

Step 2 : Update image processing functions to dynamically allocated memory format
example :

IMAGE *BlackNWhite(IMAGE *image);

IMAGE *HMirror(IMAGE *image);

IMAGE *AddBorder(IMAGE *image, char color[SLEN], int border_width);

.

.

.

.

.

.

Update “PhotoLab.c” and other functions accordingly

Implementation details :

Step 3 : New Advance DIP functions

1> Overlay function : (Update from Project 3)
Modify Overlay function to take overlay image of any size.

small image (144x168)

Small Image on RingMall

Implementation details :
2> Resize image : Enlarge or Shrink given image dimension

/*Resize*/

IMAGE *Resize(unsigned int percentage, IMAGE *image);

Widthnew = Widthold * (percentage / 100.00);

Heightnew = Heightold * (percentage / 100.00);

percentage == 100, the size of the new image is the same as the original one.
percentage < 100, the size of the new image is smaller than the original one.
percentage > 100, the size of the new image is larger than the original one.

Implementation details :

2> Resize image : Enlarge given image dimension

IF percentage is grater than 100 (Enlarge) : More pixels than the original image
Every pixel in original image will be replicated in new image
(Since there will be more pixel in out put image)

Old Image

Out put bigger Image

X1, Y1

X2, Y2

X, Y

x1 = x / (percentage / 100.00);
y1 = y / (percentage / 100.00);
x2 = (x + 1) / (percentage / 100.00);
y2 = (y + 1) / (percentage / 100.00);

Implementation details :
2> Resize image : Shrink given image dimension

IF percentage is less than 100 (Enlarge) : Less pixels than the original image
Every pixel in output image will be average of few pixels in original image
(Since there will be less pixel in out put image)

Output smaller Image

Input Image

X2, Y2

X, Y

x1 = x / (percentage / 100.00);
y1 = y / (percentage / 100.00);
x2 = (x + 1) / (percentage / 100.00);
y2 = (y + 1) / (percentage / 100.00);

X1, Y1

Implementation details :
3> Rotate image : Exchange Width and Height dimension of the given image
• Restore the image in dimension format

7 1

8 2

9 3

10 4

11 5

12 6

1 2 3 4 5 6

7 8 9 10 11 12

New Width = Old Height;
New Height = Old Width;

New image size == Old image size

Rotate
90

Degree

Input

Output

Implementation details :

3> Mandelbrot Set : (http://en.wikipedia.org/wiki/Mandelbrot_set)

• The algorithm computes the color for each pixels in the picture
based one their coordinates (Refer to assignment document for more information)

• Pseudo code for computing Mandelbrot set is given in
assignment document.
Your task is to write the given logic in “C” programing
language.

Example output Image

http://en.wikipedia.org/wiki/Mandelbrot_set

Implementation details :

3> Mandelbrot Set : (http://en.wikipedia.org/wiki/Mandelbrot_set)

Hints :

a) Line 3 to Line 6 :
Max value of x0 is 1 and min value is -2.5;

X0 = (row /width * 3.5) – 2.5; // Example mapping

Max value of y0 is 1 and min value is -1;
Y0 = (col /height * 2) – 1; // Example mapping

b) Line 26 :

Assign RGB value indexed by color at pixel (row,col)

http://en.wikipedia.org/wiki/Mandelbrot_set

Implementation details :

4> Bonus (10 points) : External border on given image

IMAGE *AddOuterBorder(IMAGE *image, char color[SLEN], int

border_width)

The output image should be a bigger image containing border and the original image

Input Image
(WxL) size

Output Image
((W+(2*border_width)) x (L +(2*border_width)])) New size

User interface : 1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to Black & White

4: Flip an image vertically

5: Mirror an image horizontally

6: Color-Filter an image

7: Sketch the edge of an image

8: Shuffle an image

9: Posterize the image

10: Fill lights to an image

11: Overlay an image

12: Bonus, Cut and Paste operation on image

13: Resize the image

14: Rotate 90 degrees clockwise

15: Generate the Mandelbrot image

16: Bonus, Add border outside the image

17: Test all functions

18: Exit

Please make your choice:

New user interface should look like

Where to start :
1: Enter this command in home directory

cd ~/eecs22

mkdir hw4

cd hw4

cp /users/grad2/doemer/eecs22/hw4/RingMall.ppm .

cp /users/grad2/doemer/eecs22/hw4/Spider.ppm .

cp /users/grad2/doemer/eecs22/hw4/Peter.ppm .

cp /users/grad2/doemer/eecs22/hw4/FileIO.h .

cp /users/grad2/doemer/eecs22/hw4/FileIO.c .

cp /users/grad2/doemer/eecs22/hw4/Image.h .

2: Create Image.c file according to Image.h and modify Makefile accordingly
3: Use build commands as in project 3
4: Implement new DIP functions and update old DIP functions.
5: Update PhotoLab.c with new user interface and Autotest function

6: Test for memory leak using “Valgrind” (see assignment document section 1.7) (Important !)

Submission :
Use the standard submission procedure to submit the following files as the whole package of your program:

PhotoLab.c
PhotoLab.script
PhotoLab.txt
Image.c
Image.h
Constants.h
DIPs.c
DIPs.h
FileIO.c
FileIO.h
Advanced.c
Advanced.h
Makefile

Please leave the images generated by your program in your public html directory. Don’t delete them as we
may consider them when grading! You don’t have to submit any images.

Note : You must implement “autotest” function testing all you DIP
operation ! Other wise points will be deducted from your score.

