
EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 1

EECS 22L: Software Engineering Project
in C Language

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 2

Lecture 1: Overview

• Introduction
– Programming Courses in EECS

– EECS 22L course outline and overview

• Course Administration
– Projects and deliverables

– Grading policy and exams

– Team work!

– Web page and programming setup

• Introduction to Software Engineering
– General software engineering

– Software development process in EECS 22L

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 2

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 3

Programming Courses in EECS

• Introductory Programming
– EECS 10: uses C programming language (for EE)

– EECS 12: uses Python programming language (for CpE)

• Programming from the Ground Up
– EECS 20: starts with Assembly language (on bare CPU),

then introduces C programming language

• Advanced Programming Courses
– EECS 22: “Advanced C Programming” (in ANSI C)

 EECS 22L: “Software Engineering Project in C” (ANSI C/C++)

• Object-Oriented Programming
– EECS 40: introduces objects and classes, hierarchy,

and higher object-oriented programming concepts
using Java

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 4

EECS 22L: Software Eng. Project in C

• “Developing real C Programs in a Team”
– Hands-on experience with larger software projects

– Introduction to software engineering
• Specification, documentation, implementation, testing

– Team work

• Features
– Design efficient data structures, APIs

– Utilize programming modules, build libraries, GUIs

– Develop and optimize contemporary software applications

• Tools
– Software development, version control: ssh, gcc, cvs, chmod

– Compilation, scripting, packaging: make, bash, groff, gtar

– Testing and debugging with gdb, ddd, gprof, gcov, …

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 3

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 5

EECS 22L: Software Eng. Project in C

• Catalogue Data
– EECS 22L Software Engineering Project in C Language

(Credit Units: 3) W.

– Hands-on experience with the ANSI-C programming language.

– Medium-sized programming projects, team work.

– Software specification, documentation, implementation, testing.

– Definition of data structures and application programming
interface.

– Creation of program modules, linking with external libraries.

– Rule-based compilation, version control.

– Prerequisites: EECS 22

– (Design Units: 3)

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 6

EECS 22L: Software Eng. Project in C

• Course Outline
– Software engineering topics, including specification,

documentation, implementation, testing, debugging, project
planning, organization, maintenance, version control,
organization of source files, header files, modules

– Compilation flow, Makefile, shell scripting

– Definition of data structures and application programming
interface

– External libraries, system programming, POSIX API,
interrupts

– Introduction to C++ language, syntax and semantics,
references, inline functions, default arguments, classes,
members, and methods, object creation and deletion
(constructors, destructors)

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 4

Course Overview

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 7

Week Lecture topics Project tasks

1 Introduction to software engineering

Project
1

Application specification

2
Software architecture, design flow,
documentation

Software architecture specification

3
Introduction to version control, GUI
programming

Documentation, implementation

4 Software development, testing, documentation Implementation, testing, debugging

5 Software packaging, installation, deployment Delivery, installation, deployment

6 Project planning, organization, maintenance

Project
2

Application specification

7 Data structure and API design Software architecture specification

8
System programming, shell scripting, Linux
tools

Documentation, implementation

9 Intro to object-oriented programming in C++ Implementation, testing, debugging

10 Course wrap up Delivery, installation, deployment

Course Overview

• Class Schedule
– Quote from EECS 22L course outline:

EECS 22L “Meets for 1 hour of lecture, 1 hour of discussion
and 3 hours of laboratory each week for 10 weeks”

– However, current schedule of classes lists 3 hours of lecture,
1 hour of discussion and 3 hours of laboratory

 Use lecture slots for actual lectures, as needed

 Use remaining lecture slots for team meetings
and team presentations

• Detailed Class Schedule
– Online at course web site:
https://eee.uci.edu/14w/18020/schedule.html

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 8

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 5

Course Administration

• Projects and Deliverables

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 9

Project Task Points Deliverable Due

Project 1:
Chess
Game

Application
specification

100 Chess_UserManual.pdf
Jan 13,

12pm (noon)

Software
specification

100 Chess_SoftwareSpec.pdf
Jan 20,

12pm (noon)

Software alpha
version

100
Chess_Alpha.tar.gz
Chess_Alpha_src.tar.gz

Jan 27,
12pm (noon)

Software release 100 (+X)
Chess_V1.0.tar.gz
Chess_V1.0_src.tar.gz

Feb 3,
12pm (noon)

Project 2:
TBD

Application
specification

100 TBD
Feb 17,

12pm (noon)

… … … …

Software release 100 (+X)
Mar 17,

12pm (noon)

Course Administration

• Effort Assessment
– Team: Project deliverables

– Individual student: Exams, plus feedback from peers, TAs

• Grading Policy
– Programming projects 50% (team effort)

– Participation 5% (individual effort)

– Midterm examination 15% (individual effort)

– Final examination 30% (individual effort)

• Exams
– Midterm exam Project 1 contribution (week 5)

– Final exam Project 2 contribution (final week)
 Short oral exams by individual students at the computer

 Explain original contribution to the team,
and answer few ad-hoc questions

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 10

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 6

Course Administration

• Team Work
– Projects will be performed by student teams

• Project 1: 10 teams of 7-8 students

• Project 2: TBD

 EEE Survey on team preferences open until 2pm today!

– Team work is an essential aspect of this class!
 Every student needs to contribute to the team effort!

 Tasks may be assigned to individual team members,
but all members share the responsibility for deliverables

– Collaboration
• Team meeting at least once a week

• Dedicated team account on the server

• Share code, data, and documents (within your team only!)

– Competition
• Teams compete for extra credit!

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 11

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 12

Course Administration

• Course web pages online at
http://eee.uci.edu/14w/18020/
– Instructor information

– Course description and contents

– Course policies and resources

– Course and project schedule

– Course communication
• Message board (announcements, class discussion)

• Email (administrative issues)

• Office hours (instructor and TAs)

• Linux system environment
– Same as for EECS 22
– EECS Linux servers crystalcove and zuma

– Additionally shared team accounts: team1, team2, …

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 7

Introduction to Software Engineering

• What is Software Engineering?
– Software engineering is the application of

engineering to software

– Software engineering can be defined as:
• The application of, or

• the study of
a systematic, disciplined, quantifiable approach
to the development, operation and maintenance
of software.

• EECS 22L …
– … is not a complete course on software engineering!

– … consists of projects that demonstrate
the essential tasks and tools of software development
in ANSI C

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 13

Introduction to Software Engineering

• General Software Engineering Process
– Project feasibility and planning

– Requirements analysis, definition, and specification

– Design and documentation of the system and software
• E.g. using UML (Unified Modeling Language)

– Implementation
• Programming (modules, system)

• Testing against the specification (units, system)

– Delivery, operation, maintenance

• EECS 22L Software Development Process
1. Application specification and documentation

2. Software architecture design and specification

3. Implementation, testing, and debugging

4. Software release

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 14

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 8

Introduction to Software Engineering

• EECS 22L does not cover
General Software Engineering Topics
– General processes of software engineering

– General feasibility study and requirements engineering

– General design strategy and documention
• E.g. UML

– Usability and reliability studies

– Legacy systems and evolution of software

– General project or personnel management

– Consideration of economic, legal, social and other factors

– Verification of software

– …

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 15

Software Development Process

• EECS 22L does cover
the essential tasks and tools of software development
– Using ANSI-C programming language

• With an outlook into object-oriented design, i.e. C++

– In Linux environment
• With typical Linux tools chain,

e.g. gcc, make, gdb, ssh, cvs, gtar, bash, gprof, …

– With focus on practical aspects
• Medium-size projects

• Programming practice

• Communication

• Team work!

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 16

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 9

Software Development Process

• EECS 22L Software Development Process
1. Application specification

• User’s perspective (aka. client, customer, consumer)

• Documentation

2. Software architecture design and specification
• Developer’s perspective (aka. producer)

• Software layers and modules

• Documentation

3. Implementation, testing, and debugging
• Unit testing

• System testing

4. Software release
• Binary program and documentation

• Source code and documentation

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 17

Software Development Process

1. Application Specification
– Goal: Specify the user experience!

• What does the user (customer, client, consumer) want?

• What does he need to provide? What does he get?

• What does the software do? What features does it have?

– Deliverable: Software User Manual (as anticipated)
• Input data including options and parameters

– What? In which format? In which order? From which device? …

• Processing
– What? (not how!) What happens? What is presented?

• Output
– What? In which format? In which order? To which device? …

 Some features may be intentionally left “undefined”

 Specification document is typically an early version
of the final documentation: User Manual!

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 18

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 10

Software User Manual

• Contents of a User Manual for a Software Product (1/2)
– Title page

• Software title, version

• Author/producer, affiliation

– Front matter
• Table of contents

• Glossary

– Overview (or Tutorial)
• Introduction, goals, usage scenario

• Typical screenshot

• Main features

– Installation
• System requirements

• Setup and configuration

• Uninstalling

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 19

Software User Manual

• Contents of a User Manual for a Software Product (2/2)
– Documentation of functionality

• Detailed description of functions, menu options

• User input, program output

• Screen shots

– Back matter
• Trouble shooting, error messages

• Copyright, contact information

• Legal, license, disclaimer of warranty

• Index

• References

• Appendix

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 20

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 11

Software Development Process

2. Software Architecture Design and Specification
– Goal: Specify the developer’s perspective!

• What data structures are used? What algorithms?

• What modules is the program composed of? Dependencies?

• How do the modules interact? What functions and parameters?

– Deliverable: Software Architecture Document
Detailed description of the software components and structures!

• Data structures and algorithms
– How is data organized?

– How is data processed?

• Software layers and modules
– Software architecture with layers of modules and libraries

– Application Procedural Interface (API) of modules (header files!)

• Implementation plan
– Project timeline

– Tasks and team member responsibilities

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 21

Software Architecture Document

• Contents of a Software Architecture Document (1/2)
– Title page

• Software title, version

• Author/producer, affiliation

– Front matter
• Table of contents

• Glossary

– Software Architecture Overview
• Introduction, goals, features

• Major software components (e.g. module hierarchy), diagrams

• Major interfaces (e.g. application procedural interfaces), diagrams

– Installation
• System requirements, compatibility

• Setup and configuration

• Building, compilation, and installation

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 22

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 12

Software Architecture Document

• Contents of a Software Architecture Document (2/2)
– Various views on the software architecture

• Use-case view, logical view, process view, deployment view
(typically described in Unified Modeling Language, UML)

– Documentation of packages, modules, interfaces
• Detailed description of data structures

• Detailed description of functions and parameters

• Detailed description of data input and output (incl. format)

– Development plan and timeline
• Partitioning of tasks

• Timeline of development, testing, releases

– Back matter
• Copyright, contact information

• Legal, license, disclaimer of warranty

• Index, References, Appendix

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 23

Chess (main module)

X11 Graphics Library
(libSDL)

Software Architecture Document

• Example: Diagram of Software Layers and Modules
– Stack of major components in the HW/SW architecture

• Application modules

• OS and third-party libraries

• Operating system (OS) infrastructure

• Hardware platform

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 24

PC Hardware (x86_64 server)

Linux OS (RHEL-6-x86_64)

Std. C (libc)Math (libm)

Strategy (AI) User Interface (GUI)

Rules (chess)

Hardware

Software

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 13

• Example: Documentation of Chess Strategy Module
– Module dependencies

• Provides: Evaluation of potential moves
• Requires: libChessRules.a, libc.a

– Exported functions
t_Move *SelectBestMove(

t_MoveList *LegalMoves,
t_Board *Board,
t_Player Color)

• Arguments:
– LegalMoves list of potential moves (which must be legal)

– Board current board position

– Color player to make the next move

• Result:
– BestMove pointer to the “smartest” move in the LegalMoves list

• Notes:
– Returns NULL if list of LegalMoves is empty

Software Architecture Document

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 25

Chess (main)

Strategy (AI)

Rules (chess)

Software Development Process

3. Implementation, Testing, and Debugging
– Goal: Develop and build the software!

• Implement the modules and integrate them

• Perform unit testing

• Perform system testing

– Deliverables: Early version of the software packages
 Alpha version: Demonstrate feasibility to the user

 Beta version: Preview software to the user

1.Software program package (for users)
– Executable program

– User manual (with known limitations)

2.Source code package (for developers)
– Source code file hierarchy

– Software architecture document

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 26

EECS22L: Software Engineering Project in C Lecture 1

(c) 2014 R. Doemer 14

Software Development Process

4. Software Release
– Goal: Release, install, operate and maintain the software!

• Complete the implementation and testing

• Complete the documentation

– Deliverables: Final version of the software packages
 Everything needed for users (client, customer, consumer)

to install, learn and operate the software!

 Everything needed for developers
to install, maintain and upgrade the software!

1.Software program package (for users)
– Executable program

– User manual

2.Source code package (for developers)
– Source code file hierarchy

– Software architecture document

EECS22L: Software Engineering Project in C, Lecture 1 (c) 2014 R. Doemer 27

