
EECS 10: Assignment 5

Prepared by: Che-Wei Chang, Prof. Rainer Doemer

July 21, 2014

Due Monday July 28, 2014 11:00pm. Note: this is a one-week assignment.

1 Digital Image Processing [80 points + 20 bonus points]

In this assignment you will learn some basic digital image processing (DIP) techniques by developing an
image manipulation program called PhotoLab. Using the PhotoLab, the user can load an image from a file,
apply a set of DIP operations to the image, and save the processed image in a file.

1.1 Introduction

A digital image is essentially a two-dimensional matrix, which can be represented in C by a two-dimensional
array of pixels. A pixel is the smallest unit of an image. The color of each pixel is composed of three primary
colors, red, green, and blue; each color is represented by an intensity value between 0 and 255. In this
assignment, you will work on images with a fixed size, 810× 450, and type, Portable Pixel Map (PPM).

The structure of a PPM file consists of two parts, a header and image data. In the header, the first line
specifies the type of the image, P6; the next line shows the width and height of the image; the last line is
the maximum intensity value. After the header follows the image data, arranged as RGBRGBRGB..., pixel
by pixel in binary representation.

Here is an example of a PPM image file:

P6

810 450

255

RGBRGBRGB...

1.2 Initial Setup

Before you start working on the assignment, do the following:

mkdir hw5

cd hw5

cp ~eecs10/hw5/PhotoLab.c ./

cp ~eecs10/hw5/WorldCup2014.ppm ./

NOTE: Please execute the above setup commands only ONCE before you start working on the assignment!
Do not execute them after you start the implementation, otherwise your code will be overwritten!

The file PhotoLab.c is the template file where you get started. It provides the functions for image file
recdading and saving, test automation as well as the DIP function prototypes and some variables (do not
change those function prototypes or variable definitions). You are free to add more variables and functions
to the program.

1

The files WorldCup2014.ppm is the PPM images that we will use to test the DIP operations. Once a
DIP operation is done, you can save the modified image. You will be prompted for a name of the im-
age. The saved image name.ppm will be automatically converted to a JPEG image and sent to the
folder public html in your home directory. You are then able to see the image in a web browser at:
http://newport.eecs.uci.edu/∼youruserid, if required names are used(i.e. ’bw’, ’negative’, ’hflip’, ’vflip’,
’sharpen’, ’hmirror’, and ’vmirror’ for each corresponding function). If you save images by other names, use
the link
http://newport.eecs.uci.edu/∼youruserid/imagename.jpg to access the photo.

Note that whatever you put in the public html directory will be publicly accessible; make sure you don’t put
files there that you don’t want to share, i.e. do not put your source code into that directory.

1.3 Program Specification

In this assignment, your program should be able to read and save image files. To let you concentrate on DIP
operations, the functions for file reading and saving are provided. These functions are able to catch many
file reading and saving errors, and show corresponding error messages.

Your program is a menu driven program. The user should be able to select DIP operations from a menu as
the one shown below:

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

Note: options ’ 8: Mirror an image horizontally in’ and ’ 9: Mirror an image vertically’ are bonus questions
(10 pts each). If you decide to skip these two options, you still need to implement the option ’10: Test all
functions’.

1.3.1 Load a PPM Image

This option prompts the user for the name of an image file. You don’t have to implement a file reading
function; just use the provided one, ReadImage. Once option 1 is selected, the following should be shown:

Please input the file name to load: WorldCup2014

After a name, for example WorldCup2014, is entered, the PhotoLab will load the file WorldCup2014.ppm.
Note that, in this assignment please always enter file names without the extension when you load or save
a file (i.e. enter ’WorldCup2014’, instead of ’WorldCup2014.ppm’). If it is read correctly, the following is
shown:

please make your choice: 1

Please input the file name to load: WorldCup2014

WorldCup2014.ppm was read successfully!

2

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

Then, you can select other options. If there is a reading error, for example the file name is entered incorrectly
or the file does not exist, the following message is shown:

please make your choice: 1

Please input the file name to load: WorldCup2014.ppm

Cannot open file "WorldCup2014.ppm" for reading!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

In this case, try option 1 again with the correct filename.

1.3.2 Save a PPM Image

This option prompts the user for the name of the target image file. You don’t have to implement a file saving
function; just use the provided one, SaveImage. Once option 2 is selected, the following is shown:

please make your choice: 2

Please input the file name to save: bw

bw.ppm was saved successfully.

bw.jpg was stored for viewing.

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

3

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

The saved image will be automatically converted to a JPEG image and sent to the folder public html. You
then are able to see the image at: http://newport.eecs.uci.edu/∼youruserid (For off campus, the link is:
http://newport.eecs.uci.edu/∼youruserid/imagename.jpg)

1.3.3 Change a Color Image to Black and White

(a) Color image (b) Black and white image

Figure 1: A color image and its black and white counterpart.

A black and white image is the one that the intensity values are the same for all color channels, red,
green, and blue, at each pixel. To change a color image to grey, assign a new intensity, which is given by
(R+G+B)/3, to all the color channels at a pixel. The R,G,B are the old intensity values for the red, the
green, and the blue channels at the pixel. You need to define and implement the following function to do
the job.

/* change color image to black and white */

void BlackNWhite(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

Figure 1 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 3

"Black & White" operation is done!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

4

please make your choice:

Save the image with name ’bw’ after this step.

1.3.4 Make a negative of an image

A negative image is an image in which all the intensity values have been inverted. To achieve this, each
intensity value at a pixel is subtracted from the maximum value, 255, and the result is assigned to the pixel
as a new intensity. You need to define and implement a function to do the job.
You need to define and implement the following function to do this DIP.

/* reverse image color */

void Negative(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

(a) Original image (b) Negative image

Figure 2: An image and its negative counterpart.

——————————————–
Figure ?? shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 4

"Negative" operation is done!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

Save the image with name ’negative’ after this step.

5

1.3.5 Flip Image Horizontally

To flip an image horizontally, the intensity values in horizontal direction should be reversed. The following
shows an example.

1 2 3 4 5 5 4 3 2 1

before horizontal flip: 0 1 2 3 4 after horizontal flip: 4 3 2 1 0

3 4 5 6 7 7 6 5 4 3

You need to define and implement the following function to do this DIP.

/* flip image horizontally */

void HFlip(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

Figure ?? shows an example of this operation. Your program’s output for this option should be like:

(a) Original image (b) Horizontally flipped image

Figure 3: An image and its horizontally flipped counterpart.

Please make your choice: 5

"HFlip" operation is done!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

Save the image with name ’hflip’ after this step.

6

1.3.6 Flip Image Vertically

To flip an image vertically, the intensity values in vertical direction should be reversed. The following shows
an example.

1 2 3 4 5 3 4 5 6 7

before vertical flip: 0 1 2 3 4 after vertical flip: 0 1 2 3 4

3 4 5 6 7 1 2 3 4 5

You need to define and implement the following function to do this DIP.

/* flip image vertically */

void VFlip(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

Figure ?? shows an example of this operation. Your program’s output for this option should be like:

(a) Original image (b) Vertically flipped image

Figure 4: An image and its vertically flipped counterpart.

Please make your choice: 6

"VFlip" operation is done!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

Save the image with name ’vflip’ after this step.

7

1.3.7 Sharpen

The sharpening works this way: the intensity value at each pixel is mapped to a new value, which is the
sum of itself and its 8 neighbours with different parameters. To sharpen the image is very similar to finding
edges. Adding the original image to its edge will result in a new image where the edges are enhanced, and
make it look sharper. Note the sum of all parameters is 1, which will result in an image with the same
brightness as the original, but sharper. The following shows an example of the filter and the applied pixel:

Filter : Original Pixels

X X X X X X X X X X

X -1 -1 -1 X X A B C X

X -1 9 -1 X X D E F X

X -1 -1 -1 X X G H I X

X X X X X X X X X X

To sharpen an edge of the image, the intensity of the center pixel (E) with the value is changed to (−A −
B − C −D + 9 ∗ E − F −G−H − I). Repeat this for every pixel, and for every color channel (red, green,
and blue) of the image. You need to define and implement a function to do this DIP. Note that you have to
set the boundary for the newly generated pixel value, i.e., the value should be within the range of [0,255]
Note that special care has to be taken for pixels located at the image boundaries. For ease of implementation,
you may choose to ignore the pixels at the border of the image where no neighbor pixels exist.
You need to define and implement the following function to do this DIP.

/* Sharpen an image */

void Sharpen(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

The sharpen image should look like the figure shown in Figure ??(b):

(a) Original Image (b) Sharpened Image

Figure 5: An image and its sharpened counterpart.

Ple1ase enter your choice: 7

"Sharpen" operation is done!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

8

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

Save the image with name ’sharpen’ after this step.

1.3.8 Mirror Image Horizontally (bonus points: 10 pts)

To mirror an image horizontally, the intensity values in horizontal direction on the right side should be
reversed and copied to the left side. The following shows an example.

1 2 3 4 5 1 2 3 2 1

before horizontal mirror:4 3 2 1 0 after horizontal mirror:4 3 2 3 4

3 4 5 6 7 3 4 5 4 3

You need to define and implement the following function to do this DIP.

/* mirror image horizontally */

void HMirror(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

Figure ?? shows an example of this operation. Your program’s output for this option should be like:

(a) Original image (b) Horizontally mirrored image

Figure 6: An image and its horizontally mirrored counterpart.

——————————————–

Ple1ase enter your choice: 8

"Sharpen" operation is done!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

9

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

Save the image with name ’hmirror’ after this step.

1.3.9 Mirror Image Vertically (bonus points: 10 pts)

To mirror an image vertically, the intensity values in horizontal direction at the bottom should be reversed
and copied to the top. The following shows an example.

1 2 3 4 5 1 2 3 4 5

before horizontal mirror:4 3 2 1 0 after horizontal mirror:4 3 2 1 0

3 4 5 6 7 1 2 3 4 5

You need to define and implement the following function to do this DIP.

/* mirror image vertically */

void VMirror(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

Figure ?? shows an example of this operation. Your program’s output for this option should be like:

(a) Original image (b) Vertically mirrored image

Figure 7: An image and its vertically mirrored counterpart.

Please make your choice: 9

"VMirror" operation is done!

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to black and white

4: Make a negative of an image

5: Flip an image horizontally

6: Flip an image vertically

7: Sharpen an image

8: Mirror an image horizontally (Bonus)

10

9: Mirror an image vertically (Bonus)

10: Test all functions

11: Exit

please make your choice:

Save the image with name ’vmirror’ after this step.

1.3.10 Test all functions

Finally, you are going to write a function to test all previous functions. In this function, you are going to
call DIP functions one by one and to observe the results. The function is for the designer to quickly test the
program, so you should supply all necessary parameters when testing. The function should look like:

void AutoTest(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT])

{

char fname[SLEN] = "WorldCup2014";

char sname[SLEN];

ReadImage(fname, R, G, B);

BlackNWhite(R, G, B);

strcpy(sname, "bw");

SaveImage(sname, R, G, B);

printf("Black & White tested!\n\n");

ReadImage(fname, R, G, B);

Negative(R, G, B);

strcpy(sname, "negative");

SaveImage(sname, R, G, B);

printf("Negative tested!\n\n");

...

ReadImage(fname, R, G, B);

Sharpen(R, G, B);

strcpy(sname, "sharpen");

SaveImage(sname, R, G, B);

printf("Sharpen tested!\n\n");

...

...

ReadImage(fname, R, G, B);

VMirror(R, G, B);

strcpy(sname, "vmirror");

SaveImage(sname, R, G, B);

printf("VMirror tested!\n\n");

...

}

Once user chooses this option, your program’s output should be like:

11

please make your choice: 10

WorldCup2014.ppm was read successfully!

bw.ppm was saved successfully.

bw.jpg was stored for viewing.

Black & White tested!

WorldCup2014.ppm was read successfully!

negative.ppm was saved successfully.

negative.jpg was stored for viewing.

Negative tested!

...

...

1.4 Implementation

1.4.1 Function Prototypes

For this assignment, you need the following functions (those function prototypes (declarations) are already
provided in PhotoLab.c. Please do not change them):

/* print a menu */

void PrintMenu();

/* read image from a file */

int ReadImage(char fname[SLEN], unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* save a processed image */

int SaveImage(char fname[SLEN], unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* change color image to black & white */

void BlackNWhite(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* reverse image color */

void Negative(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* flip image horizontally */

void HFlip(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* flip image vertically */

void VFlip(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* blur the image */

void Sharpen(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* mirror image vertically */

12

void HMirror(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* mirror image vertically */

void VMirror(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

/* Test all functions */

void AutoTest(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT]);

You may want to define other functions as needed.

NOTE: The ReadImage(), WriteImage(), and Aging() functions are already defined in PhotoLab.c. The
AutoTest() function is partially defined (You need to complete the definition of AutoTest()). The AutoTest()
function is called in the main() function without the menu. This is just an example to show how to call the
AutoTest() function. You need to add the code for the menu of this program and use proper function calls
for different DIP operations.

1.4.2 Global constants

You also need the following global constants (they are also declared in PhotoLab.c, please don’t change their
names):

#define WIDTH 810 /* Image width */

#define HEIGHT 450 /* image height */

#define SLEN 80 /* maximum length of file names */

1.4.3 Pass in arrays by reference

In the main function, three two-dimensional arrays are defined. They are used to save the RGB information
for the current image:

int main()

{

unsigned char R[WIDTH][HEIGHT]; /* for image data */

unsigned char G[WIDTH][HEIGHT];

unsigned char B[WIDTH][HEIGHT];

}

When any of the DIP operations is called in the main function, those three arrays: R[WIDTH][HEIGHT],
G[WIDTH][HEIGHT], B[WIDTH][HEIGHT] are the parameters passed into the DIP functions. Since arrays
are passed by reference, any changes to R[][], G[][], B[][] in the DIP functions will be applied to those
variables in the main function. In this way, the current image can be updated by DIP functions without
defining global variables.

In your DIP function implementation, there are two ways to save the target image information in R[][],
G[][], B[][]. Both options work and you should decide which option is better based on the specific DIP
manipulation function at hand.

13

Option 1: using local variables You can define local variables to save the target image information.
For example:

void DIP_function_name()

{

unsigned char RT[WIDTH][HEIGHT]; /* for target image data */

unsigned char GT[WIDTH][HEIGHT];

unsigned char BT[WIDTH][HEIGHT];

}

Then, at the end of each DIP function implementation, you should copy the data in RT[][], GT[][], BT[][]
over to R[][], G[][], B[][].

Option 2: in place manipulation Sometimes you do not have to create new local array variables to
save the target image information. Instead, you can just manipulate on R[][], G[][], B[][] directly. For
example, in the implementation of Negative() function, you can assign the result of 255 minus each pixel
value directly back to this pixel entry.

2 Script File

To demonstrate that your program works correctly, perform the following steps and submit the log as your
script file:

1. Start the script by typing the command: script

2. Compile and run your program

3. Choose ’Test all functions’ (The file names must be ’bw’, ’negative’, ’hflip’, ’vflip’, ’sharpen’, ’hmirror’,
and ’vmirror’ for the corresponding function)

4. Exit the program

5. Stop the script by typing the command: exit

6. Rename the script file to PhotoLab.script

NOTE: make sure use exactly the same names as shown in the above steps when saving modified images!
The script file is important, and will be checked in grading; you must follow the above steps to create the
script file.

3 Submission

Use the standard submission procedure to submit the following files:

• PhotoLab.c (with your code filled in!)

• PhotoLab.script

Please leave the images generated by your program in your public html directory. Don’t delete them as we
may consider them when grading! You don’t have to submit any images.

14

