EECS 22L: Software Engineering Project in C Language

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 1: Overview

- Introduction
 - Programming Courses in EECS
 - EECS 22L course outline and overview
- Course Administration
 - Projects and deliverables
 - Grading policy and exams
 - Team work!
 - Web page and programming setup
- Introduction to Software Engineering
 - General software engineering
 - Software development process in EECS 22L

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

2

Programming Courses in EECS

- Introductory Programming
 - EECS 10: uses C programming language (for EE)
 - EECS 12: uses Python programming language (for CpE)
- Programming from the Ground Up
 - EECS 20: starts with Assembly language (on bare CPU), then introduces C programming language
- · Advanced Programming Courses
 - EECS 22: "Advanced C Programming" (in ANSI C)
 - ➤ EECS 22L: "Software Engineering Project in C" (ANSI C/C++)
- Object-Oriented Programming
 - EECS 40: introduces objects and classes, hierarchy, and higher object-oriented programming concepts using Java

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

3

EECS 22L: Software Eng. Project in C

- "Developing real C Programs in a Team"
 - Hands-on experience with larger software projects
 - Introduction to software engineering
 - · Specification, documentation, implementation, testing
 - Team work
- Features
 - Design efficient data structures, APIs
 - Utilize programming modules, build libraries, GUIs
 - Develop and optimize contemporary software applications
- Tools
 - Software development, version control: ssh, gcc, cvs, chmod
 - Compilation, scripting, packaging: make, bash, groff, gtar
 - Testing and debugging with gdb, ddd, gprof, gcov, ...

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

4

EECS 22L: Software Eng. Project in C

- Catalogue Data
 - EECS 22L Software Engineering Project in C Language (Credit Units: 3) W.
 - Hands-on experience with the ANSI-C programming language.
 - Medium-sized programming projects, team work.
 - Software specification, documentation, implementation, testing.
 - Definition of data structures and application programming interface
 - Creation of program modules, linking with external libraries.
 - Rule-based compilation, version control.
 - Prerequisites: EECS 22
 - (Design Units: 3)

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

5

EECS 22L: Software Eng. Project in C

- Course Outline
 - Software engineering topics, including specification, documentation, implementation, testing, debugging, project planning, organization, maintenance, version control, organization of source files, header files, modules
 - Compilation flow, Makefile, shell scripting
 - Definition of data structures and application programming interface
 - External libraries, system programming, POSIX API, interrupts
 - Introduction to C++ language, syntax and semantics, references, inline functions, default arguments, classes, members, and methods, object creation and deletion (constructors, destructors)

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

6

		Course Overview							
Week	Lecture topics	Project tasks							
1	Introduction to software engineering		Application specification						
2	Software architecture, design flow, documentation		Software architecture specification						
3	Introduction to version control, GUI programming	Project 1	Documentation, implementation						
4	Software development, testing, documentation		Implementation, testing, debugging						
5	Software packaging, installation, deployment		Delivery, installation, deployment						
6	Project planning, organization, maintenance		Application specification						
7	Data structure and API design		Software architecture specification						
8	System programming, shell scripting, Linux tools	Project 2	Documentation, implementation						
9	Outlook to object-oriented programming in C++		Implementation, testing, debugging						
10	Course wrap up		Delivery, installation, deployment						

Course Overview

- · Class Schedule
 - Quote from EECS 22L course outline:
 EECS 22L "Meets for 1 hour of lecture, 1 hour of discussion and 3 hours of laboratory each week for 10 weeks"
 - However, current schedule of classes lists 3 hours of lecture,
 1 hour of discussion and 3 hours of laboratory
 - > Use lecture slots for actual lectures, as needed
 - Use remaining lecture slots for team meetings and team presentations
- Detailed Class Schedule
 - Online at course web site: https://eee.uci.edu/15w/18020/schedule.html

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

8

Course Administration

· Projects and Deliverables

Project	Task	Points	Deliverable	Due
Project 1: Chess Game	Application specification	100	Chess_UserManual.pdf	Jan 12, 12pm (noon)
	Software specification	100	Chess_SoftwareSpec.pdf	Jan 19, 12pm (noon)
	Software alpha version	100	Chess_Alpha.tar.gz Chess_Alpha_src.tar.gz	Jan 26, 12pm (noon)
	Software release	100 (+X)	Chess_V1.0.tar.gz Chess_V1.0_src.tar.gz	Feb 2, 12pm (noon)
Project 2: TBD	Application specification	100	TBD	Feb 16, 12pm (noon)
	Software release	100 (+X)		Mar 16, 12pm (noon)

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

9

Course Administration

Effort Assessment

– Team: Project deliverables

Individual student: Exams, plus feedback from peers, TAs

Grading Policy

Programming projects
 Participation
 Midterm examination
 Final examination
 50% (team effort)
 5% (individual effort)
 15% (individual effort)
 30% (individual effort)

Exams

Midterm examFinal examProject 1 contribution (week 5)Project 2 contribution (final week)

> Short oral exams by individual students at the computer

Explain original contribution to the team, and answer few ad-hoc questions

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

10

Course Administration

- Team Work
 - Projects will be performed by student teams
 - · Project 1: 10 teams of 7-8 students
 - · Project 2: TBD
 - > EEE Survey on team preferences open until 1pm today!
 - Team work is an essential aspect of this class!
 - > Every student needs to contribute to the team effort!
 - Tasks may be assigned to individual team members, but all members share the responsibility for deliverables
 - Collaboration
 - · Team meeting at least once a week
 - · Dedicated team account on the server
 - Share code, data, and documents (within your team only!)
 - Competition
 - · Teams compete for extra credit!

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

11

Course Administration

- Course web pages online at http://eee.uci.edu/15w/18020/
 - Instructor information
 - Course description and contents
 - Course policies and resources
 - Course and project schedule
 - Course communication
 - Message board (announcements, class discussion)
 - Email (administrative issues) Office hours (instructor and TAs)
- Linux system environment
 - Same as for EECS 22
 - EECS Linux servers crystalcove and zuma
 - New: shared team accounts: team1, team2, ...

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

12

Introduction to Software Engineering

- What is Software Engineering?
 - Software engineering is the application of engineering to software
 - Software engineering can be defined as:
 - · The application of, or
 - the study of a systematic, disciplined, quantifiable approach to the development, operation and maintenance of software.
- EECS 22L ...
 - ... is *not* a complete course on software engineering!
 - ... consists of projects that demonstrate the essential tasks and tools of software development in ANSI C

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

13

Introduction to Software Engineering

- General Software Engineering Process
 - Project feasibility and planning
 - Requirements analysis, definition, and specification
 - Design and documentation of the system and software
 - E.g. using UML (Unified Modeling Language)
 - Implementation
 - Programming (modules, system)
 - Testing against the specification (units, system)
 - Delivery, operation, maintenance
- EECS 22L Software Development Process
 - 1. Application specification and documentation
 - 2. Software architecture design and specification
 - 3. Implementation, testing, and debugging
 - 4. Software release

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

14

Introduction to Software Engineering

- EECS 22L does not cover General Software Engineering Topics
 - General processes of software engineering
 - General feasibility study and requirements engineering
 - General design strategy and documention
 - E.g. UML
 - Usability and reliability studies
 - Legacy systems and evolution of software
 - General project or personnel management
 - Consideration of economic, legal, social and other factors
 - Verification of software
 - **–** ...

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

15

Software Development Process

- EECS 22L does cover the essential tasks and tools of software development
 - Using ANSI-C programming language
 - · With an outlook into object-oriented design, i.e. C++
 - In Linux environment
 - With typical Linux tools chain,
 e.g. gcc, make, gdb, ssh, cvs, gtar, bash, gprof, ...
 - With focus on practical aspects
 - · Medium-size projects
 - · Programming practice
 - Communication
 - Team work!

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

16

Software Development Process

- EECS 22L Software Development Process
 - 1. Application specification
 - User's perspective (aka. client, customer, consumer)
 - Documentation
 - 2. Software architecture design and specification
 - · Developer's perspective (aka. producer)
 - · Software layers and modules
 - · Documentation
 - 3. Implementation, testing, and debugging
 - · Unit testing
 - System testing
 - 4. Software release
 - · Binary program and documentation
 - · Source code and documentation

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

17

Software Development Process

- Application Specification
 - Goal: Specify the user experience!
 - · What does the user (customer, client, consumer) want?
 - · What does he need to provide? What does he get?
 - · What does the software do? What features does it have?
 - Deliverable: Software User Manual (as anticipated)
 - Input data including options and parameters
 - What? In which format? In which order? From which device? ...
 - Processing
 - What? (not how!) What happens? What is presented?
 - Output
 - What? In which format? In which order? To which device? ...
 - > Some features may be intentionally left "undefined"
 - Specification document is typically an early version of the final documentation: User Manual!

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

18

Software User Manual

- Contents of a User Manual for a Software Product (1/2)
 - Title page
 - · Software title, version
 - · Author/producer, affiliation
 - Front matter
 - · Table of contents
 - · Glossary
 - Overview (or Tutorial)
 - · Introduction, goals, usage scenario
 - · Typical screenshot
 - · Main features
 - Installation
 - · System requirements
 - · Setup and configuration
 - Uninstalling

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

19

Software User Manual

- Contents of a User Manual for a Software Product (2/2)
 - Documentation of functionality
 - · Detailed description of functions, menu options
 - · User input, program output
 - · Screen shots
 - Back matter
 - · Trouble shooting, error messages
 - · Copyright, contact information
 - · Legal, license, disclaimer of warranty
 - Index
 - · References
 - Appendix

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

20

Software Development Process

2. Software Architecture Design and Specification

- Goal: Specify the developer's perspective!
 - · What data structures are used? What algorithms?
 - · What modules is the program composed of? Dependencies?
 - · How do the modules interact? What functions and parameters?
- Deliverable: Software Architecture Document
 - > Detailed description of the software components and structures!
 - · Data structures and algorithms
 - How is data organized?
 - How is data processed?
 - · Software layers and modules
 - Software architecture with layers of modules and libraries
 - Application Procedural Interface (API) of modules (header files!)
 - · Implementation plan
 - Project timeline
 - Tasks and team member responsibilities

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

21

Software Development Process

- 3. Implementation, Testing, and Debugging
 - Goal: Develop and build the software!
 - · Implement the modules and integrate them
 - · Perform unit testing
 - · Perform system testing
 - Deliverables: Early version of the software packages
 - Alpha version: Demonstrate feasibility to the user
 - > Beta version: Preview software to the user
 - 1. Software program package (for users)
 - Executable program
 - User manual (with known limitations)
 - 2. Source code package (for developers)
 - Source code file hierarchy
 - Software architecture document

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

22

Software Development Process

4. Software Release

- Goal: Release, install, operate and maintain the software!
 - · Complete the implementation and testing
 - · Complete the documentation
- Deliverables: Final version of the software packages
 - > Everything needed for users (client, customer, consumer) to install, learn and operate the software!
 - Everything needed for developers to install, maintain and upgrade the software!
 - 1. Software program package (for users)
 - Executable program
 - User manual
 - 2. Source code package (for developers)
 - Source code file hierarchy
 - Software architecture document

EECS22L: Software Engineering Project in C, Lecture 1

(c) 2015 R. Doemer

23