EECS 10: Assignment 4

Prepared by: Guantao Liu, Prof. Rainebmer

July 13, 2015

] Due Monday July 20, 2015 at 11:00§m

1 A menu-driven calculator for floating point numbers: Option 1-5 [25
points]

The goal of this assignment is to practice using function8 programming by performing arithmetic operations on
double precision floating point numbers.

1.1 The Option Menu

Your program should be a menu driven program. At the starbaf yprogram, the user is prompted to input a floating
point number. For instance, it may look like this:

Wel conme to ny floating point number cal cul ator!
Pl ease input a floating point nunber: 4.2

Then the program should display the current result and a maraur example, it looks like this:

The current result is: 4.200000

Add a floating point nunber to the current result;
Subtract a floating point nunmber fromthe current result;
Multiply the current result by a floating point nunber;
Divide the current result by a floating point nunber;
Take the absolute value of the current result;

Get the approxi mate square root of the current result;
Get the sine of the current result;

Get the cosine of the current result;

. Get the tangent of the current result ;

0. Get the approximte Nth root of the current result;

1

Qit.

RBOONoO DR

Pl ease enter a sel ection:

Your program should let the user select an option, 1 throdghflhe user selects 11, your program simply exits. For
other selections, your program should perform the cormeding floating point number operations.

When the user selects an operation, first ask the user to imuthex floating point number as an operand (with
the exception of the operations requiring no 2nd operandjaitperations). Once the user inputs the operand, your
program should perform the required operation and displayurrent result and the option menu again.

In our example, the user selects 1, the add operation. Sortigggon should ask the user to input a floating num-
ber to be added to.2, like this:

Pl ease input a floating point nunber operand: 1.8

Then the program should bring up the current result and mgaina This time the current result should display
6.000000 (42 + 1.8 = 6.000000).

The current result is: 6.000000

Add a floating point nunber to the current result;
Subtract a floating point nunber fromthe current result;
Multiply the current result by a floating point nunber;
Divide the current result by a floating point nunber;
Take the absolute value of the current result;

Get the approxi mate square root of the current result;
Get the sine of the current result;

Get the cosine of the current result;

. Get the tangent of the current result ;

0. Get the approximate Nth root of the current result;

1

Quit.

RBO®~NoO WD

Pl ease enter a sel ection:

1.2 Printing the Current Value

The current floating point number always holds the resulthefprevious operation. At the beginning, there is no
previous operation, so the current result just shows thériig@oint number you input at the start. In our example, it
is 4.2.

1.3 Implementation

To implement the program, you need to define a set of functiBash function does a specific job, such as addition,
subtraction, and division etc.

1.3.1 Function Declarations

As a starting point, use the following function declaration

[+ Cal culate the absolute of the input value */
doubl e Abs(doubl e op);

[+ Add two floating point nunbers and return the value */
doubl e Add(doubl e opl, double op2);

/* Subtract a floating point nunmber from another =/
doubl e Subtract (doubl e opl, double op2);

/+* Qther functions you need to inplenent for this calculator =/

FunctionAdd() requires two floating point numbers as its input parametengh are the first and second operand
for the binary operationAbs() requires one input parameter because it works only on tireruresult. You have
to think out how many input argument(s) is/are required tbeofunctions like Subtract, Multiply or Divide.

1.3.2 Error handling

A robust program is able to handle all situations, and repamny problem to the user if an error occurs. To get full
credit, your program should be able to handle the followimgre

e Notify the user withERROR: Di vi si on by zero! if the user selects the division operation and inputs
zero as the operand, and reprompt the user until a propeaihe entered.

2 Option 6-10 of the menu-driven calculator for floating point numbers
[25+5 points]

Based on the prograpal cul at or . ¢ you implement in the first part, you will be asked to extendftbating-point
calculator with several advanced functions:

option 6: Get the approximate square root of the current result;

option 7: Get the sine of current result;

option 8: Get the cosine of current result;

option 9: Get the tangent of the current result;

option 10: Get the approximate Nth root of the current result (Extexdis);

Note: In this assignment, please make "Quit'ogion 11 (no matter you have the bonus or not).

2.1 Option 6: Square root approximation [15 points]

Extend the calculator with thel$function to calculate the approximate square root of theetuifloating-point value.

2.1.1 Square root approximation algorithm

We will use a binary search approximation technique forassignment. In particular, the program will always keep a
range of a left bound L and a right bouRgwhere the actual square rddlies somewhere betweérandR: L < S<R
Consequently, it follows thdt «L < N = SxS< RxR. Thus, to find S, we can compale:L or R+« Rwith N. The
binary approximation then works as follows. First, we cobepa valueM that lies in the middle between the left
bound L and the right boun®: M =L+ (R—L)/2. Then, ifM %M is less tharlN, the square root obviously lies
somewhere in the right half of the current range (i.e. wittlito R), otherwise in the left half of the current range (i.e.
within L to M). The program then can use the proper half of the range astheange and repeat the whole process.

With each iteration, the search range is effectively reducehalf of its previous size. Because of this, this tech-
nique is called binary search. To start the search, we wéltbe range from 0 taax(1,N) (which is guaranteed to
contain the square root of). We will stop the iteration, once we have reached a rangdgisanaller than @0001 so
that we reach a precision of 5 digits after the decimal panbfur approximation.

The pseudo-code of the algorithm can be written as follows.

For example, to compute the square root of 10, the prograistailt with 5, which is in the middle between 0 and
10. Since %5 = 25 is larger than 10, the program will try the middle numbér & left bound (0 to 5). Thus, the
program compares.2x 2.5 with 10. Because the resultZs is smaller than 10, it will pick 35 (the middle number
of 2.5 and 5) as the next guess. By picking the middle number elrmagydnd comparing its square with the original
number, the program gets closer to the actual square root.

To demonstrate the approximation procedure, your progfaould print the approximated square root in each it-
eration, as follows, if the user chooses "6” as the option:

Start with a range of 0 to N
As long as the range is not accurate enough, repeat the folicsteps:
Compute the middle of the range
Compare the square of the middle value with N
If the middle value is less than the square root
Use middle-to-right as the new range
Else
Use left-to-middle as the new range
Output the middle of the latest range as result

The current result is: 10.000000

Add a floating point nunber to the current result;
Subtract a floating point nunmber fromthe current result;
Mul tiply the current result by a floating point nunber;
Divide the current result by a floating point nunber;
Take the absolute value of the current result;

Get the approxi mate square root of the current result;
Get the sine of the current result;

Get the cosine of the current result;

. Get the tangent of the current result ;

0. Get the approximate Nth root of the current result;

1.

Qit.

RBO®®~NoOR~wODdE

Pl ease enter a selection: 6

Iteration 1: the square root of 10.000000 is approxinmtely 5.000000
Iteration 2: the square root of 10.000000 is approximtely 2.500000
Iteration 3: the square root of 10.000000 is approximtely 3.750000
Iteration 4: the square root of 10.000000 is approximtely 3.125000

Iteration 20: the square root of 10.000000 is approxinmately 3.162279

Note that your program should run properly for any naturahhar which is the current result value.

2.2 Option 10: Bonus Problem [5 points]

Improve your program with the 10 option so that it can calculate the N-th root of any value. VéeeN should be
a positive integer input by the user.

For example, your program should look like this for the bopas:

The current result is: 42.000000

Add a floating point nunber to the current result;
Subtract a floating point nunber fromthe current result;
Multiply the current result by a floating point nunber;
Divide the current result by a floating point nunber;
Take the absolute value of the current result;

Get the approxi mate square root of the current result;
Get the sine of the current result;

Get the cosine of the current result;

N OR®WN R

9. Cet the tangent of the current result ;
10. Get the approximate Nth root of the current result;

11. Quit.

Pl ease enter a selection: 10

Pl ease input the value of integer n (n>0): 5
Iteration 1: the 5th root of 42.000000 is approxinmately 21.000000
Iteration 2: the 5th root of 42.000000 is approxinmately 10.500000

Iteration 26: the 5th root of 42.000000 is approximately 2.111786

Note that your program should run properly for any naturahhar which is the current result value and any integer
N which is greater than 0 (not only for the demo, the 5th rootadfig 42).

2.3 Option 7/8/9: Get the sine/cosine/tangent of current ult value [10 points]

Extend the calculator with thef7, 8th and 9h operation to get the sine, cosine and tangent value of threrLiesult.

Please reuse thiean. ¢ program from the previous assignment to create these tnetidns, and use them to get the
result value.

2.4 Implementation

To implement the program, you need to define a set of moreifumetEach function does a specific job.

2.4.1 Function Declarations

The following function declarations are recommended:

/* Get the approximate square root and return the val ue */
doubl e Appr oxi nmat eRoot 2(doubl e opl);

[+ Get the approximate nth root and return the value x/
doubl e Appr oxi mat eRoot N(doubl e opl, unsigned int n);

/* Get the approximate sine value */
doubl e Appr oxi mat eSi n(doubl e opl);

/* Get the approximte cosine value x/
doubl e Appr oxi mat eCos(doubl e opl);

/* Get the approxinmate tangent val ue =/
doubl e Approxi mat eTan(doubl e opl);

Functions Appr oxi nmat eRoot 2(), Approxi mateSi n(), Approxi nat eCos(), and

Appr oxi mat eTan() requires one floating point number as its input parameteigtwik the current result value.
Appr oxi mat eRoot N() requires one floating point number and one integer as it ipptameters where the first
one is the current result value and the second one is theNth root.

2.4.2 Error handling

Note that the input value have to be within the range (-13), for the tangent calculation. When the input value is out
of this range and user wants to calculate the tangent valtieitwiyour program should notify the user wiHRROR:
I nput out of the range!, andrepromptthe user until a proper operand is entered.

Also, if the current result value is negative and the usezcielthe option to get the approximate square/Nth root,
the program should notify the user wilfRROR: Square root of a negative nunber! /ERROR Nth
root of a negative nunber!, and reprompt the user until a proper operand is entereddditian, for the
approximate Nth root operation, if the input integpeis less than or equal to 0, your program should print the error
messag&RROR: | nval i d i nteger N ,andpromptthe user until a positive integer is entered.

3 Submission

You need to save your programe@al cul at or. c.

The way you demonstrate your code depends on whether or notgmpleted the extra credit. If you did not
complete the extra credit, perform the following steps toeyate the script file:

Compile and run your program
Input the floating point number 4.2
Add the current result with 1.8
Subtract 2.71 from the current result
Multiply the current result by -10
Divide the current result by 32.9
Take the absolute value

Divide the current result by 0 /*error handling*/

© © N o 0 &~ w0 Db P

Divide the current result by 0.333333

=
o

Multiply the current result by 0

[N
[N

. Add the current result with 10

=
N

. Get the square root of the current result value

=
w

. Multiply the current result by 0

'_\
a

. Add the current result with 1.1

[N
(6]

. Get the sine value for the current result

=
o

. Get the cosine value for the current result

=Y
~

. Get the tangent vaule for the current result
18. Exit your program
If you did complete the extra credit, perform the followirtgss to generate the script file:
1. Compile and run your program

2. Input the floating point number 4.2

Add the current result with 1.8
Subtract 2.71 from the current result
Multiply the current result by -10
Divide the current result by 32.9
Take the absolute value

Divide the current result by 0 /*error handling*/

© © N o 0 &~ »

Divide the current result by 0.333333

10. Multiply the current result by O

11. Add the current result with 10

12. Get the square root of the current result value
13. Multiply the current result by 0

14. Add the current result with 28

15. Get the 5th root of the current result value
16. Multiply the current result by O

17. Add the current result with 1.1

18. Get the sine value for the current result
19. Get the cosine value for the current result
20. Get the tangent vaule for the current result
21. Exit your program

Name the script file asal cul at or. scri pt . In addition to the above steps, your script file shows thatgampile
your program.

You also need to createcal cul at or . t xt file, which briefly explains your implementation.

Submission for these files will be similar to last week’s gegient. Put all the files for assignment 4 in directory
hwd/ and run théecelib/bin/turnin10 command in the parent directory o4/ to submit your homework.

