
EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 12

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 2

Lecture 12: Overview

• Warm-up Quiz

• Course Administration
– Midterm course evaluation

• Assertions
– Using and disabling assertions

• Debugging
– Source-level debugger gdb

– Running a program under debugger control

– Navigating and inspecting the stack

– Inspecting and modifying variable values

– Advanced commands for using break points
– Data display debugger ddd

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 2

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 3

Quiz: Question 6

• Which of the following constructs is a valid
binary operator in C?
(Check all that apply!)
a) /

b) %

c) !

d) @

e) >>

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 4

Quiz: Question 6

• Which of the following constructs is a valid
binary operator in C?
(Check all that apply!)
a) /

b) %

c) !

d) @

e) >>

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 3

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 5

Quiz: Question 7

• What is the value of the integer x after the
following statement?

a) 1

b) 2

c) 3

d) 4

e) 5

x = 11 / 3 + 11 % 3;

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 6

Quiz: Question 7

• What is the value of the integer x after the
following statement?

a) 1

b) 2

c) 3

d) 4

e) 5

x = 11 / 3 + 11 % 3;

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 4

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 7

Quiz: Question 8

• What is the value
of the variable x
after the following
lines of code?

a) 0

b) 10

c) 20

d) 42

e) 1066

unsigned char x = 42;

x += 1024;
if (x < 0)

{ x = 10; }
if (x > 255)

{ x = 20; }

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 8

Quiz: Question 8

• What is the value
of the variable x
after the following
lines of code?

a) 0

b) 10

c) 20

d) 42

e) 1066

unsigned char x = 42;

x += 1024;
if (x < 0)

{ x = 10; }
if (x > 255)

{ x = 20; }

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 5

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 9

Quiz: Question 9

• Which of the following program fragments will
not terminate? (Check all that apply!)

a)

b)

c)

int a = 1;
while(a < 1000000)

{ a++; }

d)

e)

int a = 0;
while(a < 1000)

{ a = a * 3; }

int a = 1;
while(a == 1)

{ a = a % 10; }

int a = 1;
while(a < 1000)

{ a = a << 1; }

int a = 10;
while(a > 0)

{ a = a / 3; }

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 10

Quiz: Question 9

• Which of the following program fragments will
not terminate? (Check all that apply!)

a)

b)

c)

int a = 1;
while(a < 1000000)

{ a++; }

d)

e)

int a = 0;
while(a < 1000)

{ a = a * 3; }

int a = 1;
while(a == 1)

{ a = a % 10; }

int a = 1;
while(a < 1000)

{ a = a << 1; }

int a = 10;
while(a > 0)

{ a = a / 3; }

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 6

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 11

Quiz: Question 10

• Given two global variables int x=7 and int y=8,
which of the following functions properly swaps the
values such that x=8 and y=7?
(Check all that apply!)

a)

b)

c)

void swap(int x, int y)
{ int t;

t = x; x = y; y = t;
}

void swap(void)
{ x = y; y = x;
}

void swap(void)
{ int t;

t = x; x = y; y = t;
}

void swap(void)
{ int t;

t = y; y = x; x = t;
}

void swap(int x, int y)
{ x = y; y = x;
} d)

e)

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 12

Quiz: Question 10

• Given two global variables int x=7 and int y=8,
which of the following functions properly swaps the
values such that x=8 and y=7?
(Check all that apply!)

a)

b)

c)

void swap(int x, int y)
{ int t;

t = x; x = y; y = t;
}

void swap(void)
{ x = y; y = x;
}

void swap(void)
{ int t;

t = x; x = y; y = t;
}

void swap(void)
{ int t;

t = y; y = x; x = t;
}

void swap(int x, int y)
{ x = y; y = x;
} d)

e)

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 7

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 13

Course Administration

• Midterm Course Evaluation
– One week, starting today!

– Wednesday, Oct. 19, 8am – Oct. 26, 8am

– Online via EEE Evaluation application

• Feedback from students to instructors
– Completely voluntary

– Completely anonymous

– Very valuable
• Help to improve this class!

• Mandatory Final Course Evaluation
– expected for week 10 (TBA)

Assertions

• Run-time Checks for Diagnostics and Debugging
– Can be manually implemented

– Can be enabled at time of compilation (for development)

– Can be disabled at time of compilation (for final release)

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 14

...
#ifdef DEBUG
if (value > 100)

{ printf(“Something’s wrong, value is >100!”);
abort();

} /* fi */
#endif /* DEBUG */
...

% gcc program.c –ansi –Wall –o program –DDEBUG
%

% gcc program.c –ansi –Wall –o program
%

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 8

Assertions

• Assertions: Diagnostics by the standard C library

– Header file assert.h
• Defines assert(condition) as a preprocessor macro

– Assertion failure
• At run-time, if condition evaluates to false,

the program is aborted with a corresponding diagnostic message

– Disabling assertions
• If NDEBUG is defined when assert.h is included,

the assert() macro has no effect (empty statement)

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 15

#include <assert.h>
...
assert(value <= 100);

assertion: program.c:12: main: Assertion `value <= 100' failed.
Abort

% gcc –DNDEBUG program.c –o program
%

• Example: Square Root Calculation Root.c

 Assertion protects the contract between caller and callee
• Caller is in charge of ensuring positive argument to function call

• Callee relies on this agreement (otherwise the loop will not terminate!)

#include <assert.h>

double Root(double x) /* square root approximation */
{ double l, m, r, d;

assert(x >= 0.0); /* caller must supply positive x */
l = 0.0; r = x;
do{ m = l + (r-l)/2.0;

d = m * m - x;
if (d < 0.0)
{ d = -d;
l = m; }

else
{ r = m; }

} while (d > 1e-10);
return m;

}

Assertions

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 16

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 9

Assertions

• Advise on Using Assertions
 Use assertions often

• Confirm assumptions about parameters, calculated values, etc.

• Assertions are cheap (low run-time overhead)!

 Use assertions in software development from the beginning
• Diagnostic messages are very helpful in development

– Program aborts as soon as a value is out of expected range

– Location and problem condition are shown

• This can avoid more serious problems later

 Disable assertions for final program delivered to the user
• Diagnostic messages are of no use to the end user!

– User has no idea about condition and source location

 Beware of side-effects in assertions
• Implemented as a macro!

• Can lead to Heisenbugs which disappear when debugging is on!

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 17

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 18

Debugging

• Source-level Debugger gdb
– Debugging features

• run the program under debugger control

• follow the control flow of the program during execution

• set breakpoints to stop execution at specific points

• inspect (and adjust) the values of variables

• find the point in the program where the “crash” happens

– Preparation:
compile your program with debugging support on

• Option –g tells compiler to add debugging information
(symbol tables) to the generated executable file

• gcc –g Program.c –o Program –Wall -ansi

• gdb Program

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 10

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 19

Debugging

• Source-level Debugger gdb
– Running the program under debugger control

• run
– starts the execution of the program in the debugger

• break function_name (or file:line_number)
– inserts a breakpoint; program execution will stop at the breakpoint

• cont
– continues the execution of the program in the debugger

• list from_line_number,to_line_number
– lists the current or specified range of line_numbers

• print variable_name
– prints the current value of the variable variable_name

• next
– executes the next statement (one statement at a time)

• quit
– exits the debugger (and terminates the program)

• help
– provides helpful details on debugger commands

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 20

Debugging

• Example session: Cylinder.c (part 1/2)
% vi Cylinder.c

% gcc Cylinder.c -Wall -ansi -o Cylinder -g

% gdb Cylinder

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-37.el5_7.1)

Copyright (C) 2009 Free Software Foundation, Inc.

...

Reading symbols from
/users/faculty/doemer/eecs22/lecture10/Cylinder...done.

(gdb) break main

Breakpoint 1 at 0x400654: file Cylinder.c, line 48.

(gdb) run

Starting program: /users/faculty/doemer/eecs22/lecture10/Cylinder

Breakpoint 1, main () at Cylinder.c:48

48 printf("Please enter the radius!\n");

(gdb) next

Please enter the radius!

49 scanf("%lf", &r);

...

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 11

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 21

Debugging

• Example session: Cylinder.c (part 2/2)
...

(gdb) next

5

50 printf("Please enter the height!\n");

(gdb) print r

$1 = 5

(gdb) cont

Continuing.

Please enter the height!

10

The surface area is 471.238905.

The volume is 785.398175.

Program exited normally.

(gdb) quit

%

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 22

Debugging

• Source-level Debugger gdb (continued)
– Navigating the stack

• step
– steps into a function call

• finish
– continues execution until the current function has returned

• where
– shows where in the function call hierarchy you are
– prints a back trace of current stack frames

• up
– steps up one stack frame (up into the caller)

• down
– steps down one stack frame (down into the callee)

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 12

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 23

S
ta

ck
 S

iz
e

Time

Debugging

• Navigating Stack Frames in the Debugger
• step: execute and step into a function call

• up, down: navigate stack frames

• finish: resume execution until the end of the current function

main()

Surface()

CirclePerimeter()

pi()

CircleArea()

Volume()

pi() 1 Stack Frame

step

up down finish

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 24

Debugging

• Example session: Cylinder.c (part 1/4)
% vi Cylinder.c

% gcc Cylinder.c -o Cylinder -Wall –ansi -g

% gdb Cylinder

GNU gdb 6.3

(gdb) break 55

Breakpoint 1 at 0x108d0: file Cylinder.c, line 55.

(gdb) run

Starting program: /users/faculty/doemer/eecs10/Cylinder/Cylinder

Please enter the radius: 10

Please enter the height: 10

Breakpoint 1, main () at Cylinder.c:56

56 s = Surface(r, h);

(gdb) step

Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

(gdb) step

CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi() * r);

...

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 13

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 25

Debugging

• Example session: Cylinder.c (part 2/4)
(gdb) step

pi () at Cylinder.c:14

14 return(3.1415927);

(gdb) where

#0 pi () at Cylinder.c:14

#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

#3 0x000108e0 in main () at Cylinder.c:56

(gdb) up

#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi() * r);

(gdb) up

#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

(gdb) up

#3 0x000108e0 in main () at Cylinder.c:56

56 s = Surface(r, h);

...

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 26

Debugging

• Example session: Cylinder.c (part 3/4)
(gdb) down

#2 0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

(gdb) down

#1 0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi() * r);

(gdb) down

#0 pi () at Cylinder.c:14

14 return(3.1415927);

(gdb) finish

Run till exit from #0 pi () at Cylinder.c:14

0x000107bc in CirclePerimeter (r=10) at Cylinder.c:24

24 return(2 * pi() * r);

Value returned is $1 = 3.1415926999999999

(gdb) finish

Run till exit from #0 CirclePerimeter (r=10) at Cylinder.c:24

0x000107f8 in Surface (r=10, h=10) at Cylinder.c:31

31 side = CirclePerimeter(r) * h;

...

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 14

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 27

Debugging

• Example session: Cylinder.c (part 4/4)
Value returned is $2 = 62.831854

(gdb) next

32 lid = CircleArea(r);

(gdb) step

CircleArea (r=10) at Cylinder.c:19

19 return(pi() * r * r);

(gdb) finish

Run till exit from #0 CircleArea (r=10) at Cylinder.c:19

0x00010818 in Surface (r=10, h=10) at Cylinder.c:32

32 lid = CircleArea(r);

Value returned is $3 = 314.15926999999999

(gdb) cont

Continuing.

The surface area is 1256.637080.

The volume is 3141.592700.

Program exited normally.

(gdb) quit

%

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 28

Debugging

• Source-level Debugger gdb (continued)
– Inspecting the stack

• info frame
– displays information about the current stack frame

• info locals
– lists the local variables in the current function (current stack frame)

• info scope function
– lists the variables in the scope of the specified function

– Calling functions (outside of the regular control flow)
• call function(arguments)

– calls the specified function with the specified arguments

– Assembly level inspection
• info registers

– lists the CPU registers and their contents
• disassemble function

– disassembles the function and lists its assembly code

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 15

Debugging

• Source-level Debugger gdb (continued)
– Inspecting and modifying variable values

• print variable_name
– prints the current value of the variable variable_name

• set variable = value
– sets the specified variable to the specified value

• display variable
– prints the value of a variable each time before the next command

• info display
– lists information on the displayed variables

• undisplay variable
– turns off the display of the specified variable

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 29

Debugging

• Source-level Debugger gdb (continued)
– Advanced commands for using break points

• info breakpoints
– displays information about break points

• tbreak function_name (or file:line_number)
– inserts a temporary breakpoint (valid only once)

• watch variable
– sets a watch point on the specified variable for write access

• rwatch variable
– sets a watch point on the specified variable for read access

• ignore breakpoint n
– skips the specified break point n times

• enable (or disable) breakpoint (or watchpoint)
– Enables (or disables) a break point (or watch point)

• condition breakpoint condition
– Specifies a condition for the given break point

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 30

EECS22: Advanced C Programming Lecture 12

(c) 2016 R. Doemer 16

Debugging

• Data Display Debugger ddd
– Graphical frontend for gdb

• Requires X forwarding and corresponding client
(e.g. Xming in addition to Putty)

– Provides menu bar
and command buttons

– Displays separate
work windows

• Graphical display area
for data structures

• Source code browser

• Assembly code browser

• Command line interface

– Example: Cylinder.c

EECS22: Advanced C Programming, Lecture 12 (c) 2016 R. Doemer 31

