EECS 22: Assignment 5

Prepared by: Guantao Liu, Prof. Rainebider

November 16, 2016

’ Due Thursday December 1, 2016 at 6:00‘pm

Contents

1 MovieLab (100 points)

1.1 Introduction
1.2 |Initial Setub

1.3 Design the MovieLab Program
1.3.1 _The Image.c Module (Provided)
1.3.2 The ImageList.c Module

2 Bonus (10 points)

3 Build the Makefile

4 Implementation Details
4.1 Structure Definitions
4.2 Function Prototypes

5 Budgeting Your Time
6 Script File

7 Submission

8 Grading

1 MovieLab (100 points)

In this assignment you will learn how to design a program ke tommand-line arguments and how to design a linked

1.3.3 The Movie.c Module
1.3.4 The MovieLab.c Module

OO wWwwN R T

14

14

14
14
15

16

17

17

18

list. A programMovielLah will be developed to perform digital image processing (Ddperations on an input movie.

A movie is basically a sequence of images called frames Wwélsame size. You will be asked to design a linked list of
images to represent the movie in your program, load the fsasfithe movie, and then use the DIP functions designed

in the previous assignments to perform image processingabpes on the frames in the movie.

1.1 Introduction

A movie is basically a sequence of images with different entg but same fixed size. Playing a movie is actually
showing the images one after another at a certain ratefpsgframes per second). Each image in the movie is the
same as what we have learned in the previous assignmengsedséntially a two-dimensional matrix, which can be

represented in C by an array of pixels. A pixel is still the Besh unit of an image.

In this assignment, we will work on a movie with a fixed numbéframes (180) and resolution (320240 pix-
els/frame), but your program should be able to handle oikes &s well. The color space of the images in the movie
is YUV format (http://en.wikipedia.org/wiki/YUV) instead ofRGB.

In YUV format, the color of each pixel is still represented by 3 comgnts, now referred to &channeglU channel
andV channel Here,Y channefepresents the luminance of the color, whilehannelandV channelrepresent the
chrominance of the color. Each channel for one pixel is stfiresented by an intensity value between 0 and 255. In
order to utilize the DIP functions that handle the imagesgisheRGB color space, conversion is needed to change
the YUV tuple into aRGB tuple for each pixel (Sectidn 1.3.3). TN&JV color space is very common for video
streams. As our input and output file both use Y/ color space, we need to convert each frame in the movie from
YUV to RGB right after loading the movie, and froRGB to YUV before saving the movie to the output file.

1.2 Initial Setup

Before you start working on this assignment, please do thaxfimg steps:

1. Create the directorlgw5 for this assignment, and change your current directorigvid by using these com-
mands:

mkdir hw5
cd hwb

2. We will reuse some of the source code from our previougyasgnts. Please feel free to reuse any of your
designs, or reuse the solution files to the previous assigtswehich are posted on our course website. Please
integrate the necessary DIP functions defined in the DIRsdcAalvanced.c from Assignment 4 into a new
DIPs.c for Assignment 5.

Note: Instead of the course website, you can copy the solutionssighment 4 from the shared folder:

cp “eecs22/public/hwb/FilelO.h .

cp “eecs22/public/hwb/FilelO.c .

cp “eecs22/public/hw5/DIPs.h .

cp “eecs22/public/hwb/DIPs.c .

cp “eecs22/public/hw5/Advanced.h .
cp “eecs22/public/hw5/Advanced.c .
cp “eecs22/public/hw5/Makefile .

3. Copy the provided files from theecs22account.

cp “eecs22/public/hw5/Image.c .

cp “eecs22/public/hw5/Image.h .

cp “eecs22/public’hwb/MovieLab.c .

cp “eecs22/public/hwb/Constants.h .
cp “eecs22/public/hwb/watermark.ppm .

Here,

e Image.his a header file for the definition of tH®MAGE structure and declarations of the pixel mapping
functions we have been using for Assignment 4. We also adeedWVIMAGESstructure and the corre-
sponding pixel mapping functions for thYeJV color space;

¢ Image.cis a modified source code file fetmage.h

e MovielLab.cis a template file with sample code for command-line argumparging, and the basic file I/O
functions.

http://en.wikipedia.org/wiki/YUV

e Constants.his a modified header file which contains macros used in thigms®nt.
e watermark.ppm is a watermark image used in this assignment.

All the files listed above will be available ireecs22/public/hwb/ after the deadline of Assignment 4.

4. Create a symbolic link to the input movie stream file fromeabkcs22ccount on theumaor crystalcoveserver.
In -s “eecs22/public/hwb/dive.yuv

Here,dive.yuv is a symbolic link to the input movie file in owecs22account. Since we have space limitation
for each account on the servers, it is helpful to save diskesfiar each account by sharing the read-only input
file.

We will use thedive.yuvfile as the test input stream for this assignment. Once a nopéeation is done, you can save
the output movie asame.yuvn your working directory by using theo” option.

You will need aYUV player to view the movie files. Our providé&UV player requires you to have X window support
on your own machine where you use eitPerTTY (Windows users) oferminal (Mac Users) to remote login to the
Linux server. For Mac users, you need to haguartz installed to support the X window. Please remember to add the
“-X" option while using théssh” command (then macOS will ask you to instéfQuartz if it is missing). For Win-
dows users, you need to install the X server first and set thiégeoations inPuTTY with properX11 forwarding A

free X serverXming, for the Windows system is available frduttps://sourceforge.net/projects/xming/

The detailed instructions dAuTTY configuration is available from

http://www.geo.mtu.edu/geoschem/docs/putty _install. html |

With the X server running properly, you can use the followirognmands to play your movie files (.yuv):

cd hwb
“eecs22/bin/lyay -s WIDTHXHEIGHT filename.yuv

Specifically, you can play the test video stream by using:

“eecs22/binlyay -s 320x240 dive.yuv

1.3 Design the MovieLab Program

In this assignment, we will design a data structure to regmethe movie in a C program. Fig. 1 illustrates the double
linked list data structure for the movie in this assignment.

1.3.1 The Image.c Module (Provided)

In Assignment 4, we designed th@age.cmodule for the basic image manipulation functions. A stiMAGE is
defined for the pixels in thRGB format. Also, image creation/deletion functions and piretnsity Get/Set functions
are defined accordingly.

Since the data structure for théJV format is almost the same as tR&GB format, we define similar structure
and image manipulation functions for tv&JV format. Now the structures and function signaturefmage.hlook
like this:

typedef struct {
unsigned int Width; / * Image width =/

unsigned int Height; / * |Image height =/

unsigned char *R; / = Pointer to the memory storing */
/= all the R intensity values */

unsigned char *G; / + Pointer to the memory storing */
[+ all the G intensity values */

https://sourceforge.net/projects/xming/
http://www.geo.mtu.edu/geoschem/docs/putty_install.html

unsigned char *B; / = Pointer to the memory storing */

[+ all the B intensity values * [
} IMAGE;
/* Get the intensity value of the Red channel of pixel (X, y) */
/* in the RGB image =/
unsigned char GetPixelR(const IMAGE *image, unsigned int X, unsigned int y);
/= Get the intensity value of the Green channel of pixel (x, y) */
/* in the RGB image */
unsigned char GetPixelG(const IMAGE *image, unsigned int X, unsigned int y);
/* Get the intensity value of the Blue channel of pixel (x, y) */
[+ in the RGB image =/
unsigned char GetPixelB(const IMAGE *image, unsigned int X, unsigned int vy);
/= Set the intensity value of the Red channel of pixel (x, y) */

[+ in the RGB image with valueR */
void SetPixelR(IMAGE *image, unsigned int x, unsigned int vy,
unsigned char valueR);

/= Set the intensity value of the Green channel of pixel (x, y) */
[+ in the RGB image with valueG */
void SetPixelG(IMAGE *image, unsigned int X, unsigned int vy,

unsigned char valueG);

[+ Set the intensity value of the Blue channel of pixel (X, y) */
/* in the RGB image with valueB */
void SetPixelB(IMAGE *image, unsigned int x, unsigned int vy,

unsigned char valueB);

[+ Allocate the memory space for the RGB image and the memory spa ces */
/= for the RGB intensity values. Return the pointer to the RGB im age. =/
IMAGE = Createlmage(unsigned int width, unsigned int height);

/ = Release the memory spaces for the RGB intensity values. */
/ * Release the memory space for the RGB image. */
void Deletelmage(IMAGE *image);

typedef struct {
unsigned int Width; / * Image width =/

unsigned int Height, / * Image height =/
unsigned char *Y; / = Pointer to the memory storing */
[+ all the Y intensity values * [
unsigned char *U; / = Pointer to the memory storing */
/= all the U intensity values */
unsigned char *V; / = Pointer to the memory storing */
[+ all the V intensity values */
} YUVIMAGE;
/= Get the intensity value of the Y channel of pixel (x, y) */
/* in the YUV image =/
unsigned char GetPixelY(const YUVIMAGE *YUVimage, unsigned int x, unsigned int y);

/ * Get the intensity value of the U channel of pixel (X, y) */
[+ in the YUV image =/

unsigned char GetPixelU(const YUVIMAGE *YUVimage, unsigned int x, unsigned int y);
[+ Get the intensity value of the V channel of pixel (x, y) */

/* in the YUV image =/

unsigned char GetPixelV(const YUVIMAGE *YUVimage, unsigned int x, unsigned int y);
/= Set the intensity value of the Y channel of pixel (x, y) */

/* in the YUV image with valueY */

void SetPixelY(YUVIMAGE *YUVimage, unsigned int x, unsigned int vy,
unsigned char valueY);

[+ Set the intensity value of the U channel of pixel (X, y) */

/* in the YUV image with valueU */

void SetPixelU(YUVIMAGE *YUVimage, unsigned int x, unsigned int v,
unsigned char valuel);

[+ Set the intensity value of the V channel of pixel (x, y) */

/* in the YUV image with valueV */

void SetPixelV(YUVIMAGE *YUVimage, unsigned int x, unsigned int v,
unsigned char valueV);

/= Allocate the memory space for the YUV image and the memory spa ces x/
[+ for the YUV intensity values. Return the pointer to the YUV im age. =/
YUVIMAGE * CreateYUVImage(unsigned int width, unsigned int height);

/ = Release the memory spaces for the YUV intensity values. */
/ = Release the memory space for the YUV image. * [
void DeleteYUVImage(YUVIMAGE *YUVimage);

1.3.2 The ImageList.c Module

Next we are going to design a double-linked list to store tames (images) for the movie and keep them in the correct
order.

As discussed iecture 19 and20, a double-linked list is a data structure that consists atatsequentially linked
records calleeéntries Eachentrycontains at least two fields, called links, that are refegsrio the previousRrev)
and to the nextNex) entry in the sequence of entries. The fifSirgt) and last Lasf) entries’ PrevandNextlinks,
respectively, point to a terminatddULL, to facilitate easy traversal of the list.

Please add one modulmageList.c (with a header fildmageList.h) to your MovieLabprogram.

In this module, define the following two structures:

e The structure for the image list entifgNTRY :

typedef struct ImageEntry IENTRY;
typedef struct ImageList ILIST;

struct ImageEntry {

ILIST = List; / * Pointer to the list which this entry belongs to * [
IENTRY =*Next; / * Pointer to the next entry, or NULL */
IENTRY =*Prev; [* Pointer to the previous entry, or NULL */

IMAGE * RGBImage; / = Pointer to the RGB image, or NULL
/ = Pointer to the YUV image, or NULL

YUVIMAGE * YUVImage;

xf
*/

Note that either th&k GBImagepointer or theYUVImagepointer will beNULL at any time. TherUVimage
pointer will be valid (andRGBImageis NULL) when loading and saving the movie file, and fR€Blmage
pointer is in use (s&¥UVImages NULL) when DIP operations take place. Please make sure that geute

memory space pointed to by the unused pointer.

e The structure for the image lifitIST :

struct ImagelList {

unsigned int Length; / * Length of the list */
IENTRY = First; / = Pointer to the first entry, or NULL
IENTRY =*Last; [/ = Pointer to the last entry, or NULL

In the same module, define the following double-linked listdtions:

/= Create a new image list */
ILIST =+ CreatelmageList(void);

/= Delete an image list (and all entries) */
void DeletelmageList(ILIST * [ist);
/* Insert a RGB image to the image list at the end */

void AppendRGBImage(ILIST *list, IMAGE * RGBimage);

/* Insert a YUV image to the image list at the end */
void AppendYUVIimage(ILIST xlist, YUVIMAGE *YUVimage);

[+ Crop an image list */

void CroplmagelList(ILIST *list, unsigned int start, unsigned int end);
/* Fast forward an image list */

void FastimageList(ILIST = list, unsigned int factor);

/* Reverse an image list */

void ReverselmageList(ILIST * list);

x/
*/

Note: Please refer to the slides bécture 19 and20for an example of implementing a double-linked list.

1.3.3 The Movie.c Module

Please add one moduléovie.c (with a header fileviovie.h) to handle basic operations on the movie.

e The MOVIE struct: We will use astructtype to aggregate all the information of one movie. Pleadi@e¢he

following struct inMovie.h:

/= the movie structure * [
typedef struct {

ILIST =xFrames; / * Pointer to the frame list */
} MOVIE;

¢ Define the following functions for basic movie operationdea®e use the following function prototypes (in
Movie.h) and define the functions properly (Wovie.c)

/ = Allocate the memory space for the movie and the memory space */
[= for the frame list. Return the pointer to the movie. */
MOVIE * CreateMovie(void);

/ = Release the memory space for the frame list. */
/ = Release the memory space for the movie. */
void DeleteMovie(MOVIE * movie);

/* Convert a YUV movie to a RGB movie * [
void YUV2RGBMovie(MOVIE *movie);

/* Convert a RGB movie to a YUV movie x [
void RGB2YUVMovie(MOVIE *movie);

MOVIE

ImagelList
Length
I First | | Last I
ImageEntry ImageEntry ImageEntry ImageEntry
\
st] Uit

|
| Next |p-- »{| Next
|

|
e |~ e
Prev ||<«— Prev ||« Prev ||e -- Prev
1 1

[Fommege]| | [Fosimaae]
\ \
[ovmage]| | [rovnese]
VAR Y VAR Y
IMAGE IMAGE IMAGE IMAGE
Yuvi Yuvi Yuvi Yuvi
— Width — Width — Width — Width
Width| peight Width| feight Width| peight Width| peight

Heigh - Heigh - Heigh
[y [y [y
v B EEE| | E

Figure 1: Double Linked List for the Movie

r

e Conversion between YUV and RGB:
The conversion between the YUV format (used by many imagerande compression methods) and the RGB
format (used by many hardware manufacturers) can be donkebfoliowing formulas. They show how to
compute a pixel's values in one format from the pixel valuethe other format.

Please use the following formulas for thi&/V2RGBMoviendRGB2YUVMovidunctions.

— Conversion from RGB to YUV:

Y =clip(((66 * R+ 129 * G + 25+ B + 128) >> 8) + 16)
U = clip(((-38 * R- 74 * G + 112 * B + 128) >> 8) + 128)
V=oclip(((112 * R- 94 * G- 18 * B + 128) >> 8) + 128)

— Conversion from YUV to RGB:

C=Y-16
D=U- 128
E=V- 128
R = clip((298 * C + 409 * E + 128) >> 8)
G =clip((298 =+ C - 100 = D - 208 » E + 128) >> 8)
B =clip((298 * C + 516 « D + 128) >> 8)

Here,clip() denotes clipping a value to the range of 0 to 255 (saturattthaatic). More specifically,

clip(x) = x, if 0 <= x <= 255;
clip(x) = 0, if x < O;
clip(x) = 255, if x > 255.

NOTE: Use typeint for the variables in the calculation.

1.3.4 The MovieLab.c Module

Extend theMovieLab.c template as the top module of tMovieLabprogram.

e Support for command-line arguments:
The C language provides a method to pass arguments to thé) edotion when executing the program. This
is typically accomplished by specifying arguments on therafing system command line (console).

Here, the prototype famain()looks like:

int main(int argc, char *argv(])

{
}

There are two parameters in thein() function. The first parametein¢ argc) is the number of items on the
command line, including the executable name and all thenaggits. Each argument on the command line is
separated by one or more spaces, and the operating systees glach argument directly into its own null-
terminated string. The second parametdaf *argv[]) of main()is an array of pointers to the character strings
containing each argument.

Please add support for command-line arguments tdvtbeieLab.cprogram. The following options should
be supported:

— -i <file> to provide the inpukfile> name

— -o <file> to provide the outpukfile> name

— -f <framenum> to determine how many frames are read from the input stream

— -s<WIDTHXHEIGHT > to set the resolution of the input stream (WIDTHXHEIGHT)
— -agingto activate the aging filter

— -hflip to activate horizontal flip

— -edgeto activate the edge filter

— -crop <start-end> to crop the movie frames fromstart> to <end>

— -fast <factor> to fast forward the movie by factor> (1+)

— -rvsto reverse the frame order of the input movie

— -watermark <file> to add a watermark frorafile> to every movie frame

— -spotlight <radius> to spotlight a circle okradius> on every movie frame

— -zoom(BONUS) to zoom in and out the input movie

-h to display this usage information

The MovieLab.ctemplate file contains the sample code for the suppottitf “-0” and“-h” options. Please
extend the code accordingly to support the rest of the option

NOTE: The MovieLabprogram can perform multiple operations in an executiorthéfuser gives more than
one option, please perform the selected options in thevidlip order: “-aging”, “-hflip” , “-edge”, “-crop” ,
“fast” , “-rvs” , “-watermark” , “-spotlight” , and therf-zoom”.

The“-i" , “-0”, “-f" , “-s” options are mandatory tblovieLabwith an exception when the user just wants
to see the usage information (optith”).

Please show proper warning messages and terminate thetierecuMovieLabif any of the mandatory op-
tions are missing as the command-line argument.

In order to get two integer values for thes” option, please use the following piece of code (assume that
theith command-line argument contains these two values):

unsigned int width, height;
if (sscanf(argv[i], "%ux%u", &width, &height) == 2) {

[+ input is correct */

/ = the image width is stored in width */

/ = the image height is stored in height */
} else {

/* input format error */

}

You can search online for the synopsis and description ossieanf()function. Basically, this function reads
formatted data from a character string and returns the nuofliEms in the argument list successfully filled.

If we run theMovieLabwith the“-h” option, we will have:

% ./MovieLab -h

Usage: MovieLab -i <file> -0 <file> -f <framenum> -s <WIDTHXx HEIGHT> [options]
Options:

-aging Activate the aging filter on every movie frame

-hflip Activate horizontal flip on every movie frame

-edge Activate the edge filter on every movie frame

-crop <start-end> Crop the movie frames from <start> to <end >

-fast <factor> Fast forward the movie by <factor>

-rvs Reverse the frame order of the input movie

-watermark <file> Add a watermark from <file> to every movie frame
-spotlight <radius> Spotlight a circle of <radius> on every movie frame
-zoom Zoom in and out the input movie

-h Display this usage information

Otherwise, we need to run tihdovieLabwith proper information for the movie and operation optiogg):

% ./MovieLab -i dive -0 out -f 180 -s 320x240 -aging
The movie file dive.yuv has been read successfully!
Operation Aging is done!

The movie file out.yuv has been written successfully!
180 frames are written to the file out.yuv in total.

Load and save movie files:
We have provided some file I/O functions defined in MevieLab.cmodule. The function signatures for the
file I/O functions are:

— YUVIMAGE* LoadOneFrame(const char* fname, int n, unsigned int width, unsigned height)
loads the movie file with namimame.yuyand returns the pointer to¥MJVIMAGESstruct which contains
the color intensities for channel Y, U and V of theh frame.

— int SaveMovie(const char *fname, MOVIE *movie)
opens the movie file with nanfaame.yuyand saves the movie frames irfitmme.yuy

— MOVIE *LoadMovie(const char *fname, int frameNum, unsigned int width, unsigned height)
loads a numbeframeNunmof frames from the movie file with nanfeame.yuyand returns the pointer to
the moviestruct. NOTE: You need to implement this function. Please call thé.oadOneFrame() and
AppendYUVImage() functions to implement the function.

InsideLoadMovie()which gets the content of the input movie file, you need to &lisicate the memory space
for the moviestruct by callingCreateMovie() The LoadOneFrame(function will take the file name of the
video, the resolution of the video, and the frame index togagl las pass-in arguments, and retuvitu¥IMAGE
pointer to the memory space storing the input frame. At tlteaftyour program, you need to free these memory
spaces to avoid memory leakage.

Perform DIP operations on the movie:
We will add support for 8 DIP operations on the movie file:

— Create an aging movie (tHeaging” option):
Traverse the frame list of the movie, and perfolging() operation on each frame image. The execution
of our program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -aging
The movie file dive.yuv has been read successfully!
Operation Aging is done!

The movie file out.yuv has been written successfully!
180 frames are written to the file out.yuv in total.

10

— Flip the movie horizontally (th&-hflip” option):
Traverse the frame list of the movie, and perfddfflip() operation on each frame image. The execution
of our program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -hflip
The movie file dive.yuv has been read successfully!
Operation HFlip is done!

The movie file out.yuv has been written successfully!
180 frames are written to the file out.yuv in total.

— Create a edge-detected movie (thedge” option):
Traverse the frame list of the movie, and perfdeage()operation on each frame image. The execution
of our program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -edge
The movie file dive.yuv has been read successfully!
Operation Edge is done!

The movie file out.yuv has been written successfully!
180 frames are written to the file out.yuv in total.

— Crop frames from the movie (tHecrop” option):
Perform theCroplmageList(pperation on thémageListin themoviestructure. Your program should print
the number of frames after cropping. Fig. 2 illustrates thecept of cropping operation. In this example,
the program takes frame 71 to frame 140 and generates a nei@ witly 70 frames.

Original Cropped movie

71 140

>
S SR AR

Figure 2: Cropping Operation

NOTE: The frame index in the movie starts from 0, and the two framdexed bystart andendare kept
in the new movie.

The execution of our program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -crop 71-140
The movie file dive.yuv has been read successfully!
Operation Crop is done! New number of frames is 70.

The movie file out.yuv has been written successfully!

70 frames are written to the file out.yuv in total.

— Create a fast forwarded movie (théast” option):
Perform theFastimageList(pperation on thémagelListin themoviestructure with the given fast forward
factor. Note that your program should also print the numlidrames after fast forwarding. Fig! 3 illus-
trates the concept of fast forward operation. In this exanpfast forwarding by 3, the program will take
every third frame from the original one to generate the newieo

The execution of our program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -fast 3
The movie file dive.yuv has been read successfully!

11

Operation Fast Forward is done! New number of frames is 60.
The movie file out.yuv has been written successfully!
60 frames are written to the file out.yuv in total.

Original Fast forwarded

x3

=
VAT :

Figure 3: Fast Forwarding Operation

— Reverse the frame order in the movie (thes” option):
Perform theReverselmageListQperation on thémageListin the moviestructure. The execution of our
program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -rvs
The movie file dive.yuv has been read successfully!
Operation Reverse is done!

The movie file out.yuv has been written successfully!
180 frames are written to the file out.yuv in total.

— Add a watermark to each frame in the movie (theatermark” option):

Traverse the frame list of the movie, and add a watermarkdah #ame image. The position of the water-
mark will be decided at run time by using the random numbeeg®or, and it stays at the same place for
15 consecutive frames. Afterwards, it will move to a new positiNote that the watermark can be at any
position in the frame image. You should use the random numéeerator to generate the coordinates of
the top left corner of the watermark image in the frame imagee coordinates can be any valid coordi-
nates in the frame image. Just ignore any part of the watérmeage which is out of the boundary of the
frame image.

NOTE: The loaded watermark image can be of any size. So this operiata little different from théVa-
termark()function in Assignment 3. Please check the function prgetyf the newWVatermark(function
in Section 4.2.

The execution of our program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -watermark water mark
The movie file dive.yuv has been read successfully!

Operation Watermark is done!

The movie file out.yuv has been written successfully!

180 frames are written to the file out.yuv in total.

— Spotlight a circle on each frame in the movie (thepotlight” option):

Traverse the frame list of the movie, and spotlight a circleach frame image. Here, for any pixel that is
within the circle, i.e. the distance from the pixel to the tegns less than or equal to the radius provided
by the user, your program keeps its original intensity valueor all pixels that are out of the circle, your

program makes them black. The center of the circle starta f0), and moves as indicated in Fig. 4.

The movement speed is 10 pixels per frame,(i020), (10,10), (20,20), When the center reaches any
boundary of the frame image, it will bounce to another dicects in Figl 4. For example, if the image

size is 50x 40, then the positions of the center will K&, 0), (10,10), (20,20), (30,30), (40,40), (50,30),

12

(40,20), (30,10), Note that the radius can be any nonnegative integer.

(0, 0) (20, 0) (50,0) X
N ‘1\45"
45° AN AN
4(50, 30)
N A
N a5
(0, 40) ——
(40, 40)
Y
\ 4

Figure 4: Spotlight Movement

The execution of our program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -spotlight 100
The movie file dive.yuv has been read successfully!
Operation Spotlight is done!

The movie file out.yuv has been written successfully!

180 frames are written to the file out.yuv in total.

HINT: We will reuse some functions defined Ps.cand Advanced.drom Assignment 4. Please integrate these
two modules into a newIPs.cmodule for this assignment. You also have to adjust your Mliekaccordingly with
proper targets and dependencies and include the headd@Ifils.f) properly in your source code.

NOTE: Due to the space limitation for the account on the Linux seiplease always use the same output file name,
i.e. out.yuv, when you test your program so as to save distespa

For references, we put the output movie files from the aboveeBations (plus th2oomoperation from Sectidn| 2) in
the shared folder. You may compare your results with themalig

“eecs22/public/hwb/demo/aging.yuv
“eecs22/public/hw5/demo/hflip.yuv
“eecs22/public/hw5/demo/edge.yuv
“eecs22/public/hws/demo/crop.yuv
“eecs22/public/hw5/demol/fast.yuv
“eecs22/public/hw5/demol/rvs.yuv
“eecs22/public/hwb/demo/watermark.yuv
“eecs22/public/hw5/demo/spotlight.yuv
“eecs22/public/hws/demo/zoom.yuv

13

2 Bonus (10 points)

Extend theMovieLab program with an additional DIP operation (theoom” option) on the movie.

In the Zoomoperation, your program traverses the frame list of the moand resizes each frame image and puts
the result in the center of the frame. For any remaining pikethe frame, make them black. At the beginning of the
movie, the resize percentage is 0%, and then it increase%lpe? frame. When the resize percentage reaches 100%,
it then decreases by 2% per frame until 0. Afterwards, thegrgage increases again. So a sequence of the resize
percentages will be: 092%,4%,6%, ...,98% 100% 98%, 96%, ..., 4%, 2%, 0%, 2%, 4%, You can assume that the
resize percentage will always be an even number.

The execution of our program should be like:

% ./MovieLab -i dive -0 out -s 320x240 -f 180 -zoom
The movie file dive.yuv has been read successfully!
Operation Zoom is done!

The movie file out.yuv has been written successfully!
180 frames are written to the file out.yuv in total.

HINT: This operation is actually a combination Résize(and AddBorder() Perform these two operations on each
frame image.

3 Build the Makefile

Please create your owakefile with at least the following targets:
¢ all: the dummy target to generate the executable prodviawvieLah

e clean: the target to clean all the intermediate files, e.g. objees fithe output .yuv file, and the executable
program.

e *.0: the target to generate the object file *.0 from the C source ditel*.c.

e MovielLab: the target to generate the executable progkémaielLab

4 Implementation Details

Here is a recap of all the structures and functions you negdgtement in this assignment.
4.1 Structure Definitions

For this assignment, you need to define the following strestinimageList.h:

typedef struct ImageEntry IENTRY;
typedef struct ImagelList ILIST;

struct ImageEntry {

ILIST = List; |/ + Pointer to the list which this entry belongs to * [
IENTRY =* Next; / * Pointer to the next entry, or NULL */

IENTRY =*Prev; / * Pointer to the previous entry, or NULL */

IMAGE * RGBImage; | » Pointer to the RGB image, or NULL */
YUVIMAGE * YUVImage; [/ * Pointer to the YUV image, or NULL */

h

struct ImagelList {

14

unsigned int Length; / * Length of the list */
IENTRY =* First; / = Pointer to the first entry, or NULL */
IENTRY =*Last; / = Pointer to the last entry, or NULL */

The following structure ilMovie.h:

/ * the movie structure */
typedef struct {

ILIST =+*Frames; / * Pointer to the frame list * [
} MOVIE;

4.2 Function Prototypes

For this assignment, you need to define the following fumdim thelmageList.c module:

/* Create a new image list */
ILIST = CreatelmageList(void);

/= Delete an image list (and all entries) */
void DeletelmageList(ILIST * list);
/* Insert a RGB image to the image list at the end */

void AppendRGBImage(ILIST *list, IMAGE * RGBimage);

/* Insert a YUV image to the image list at the end */
void AppendYUVIimage(ILIST +list, YUVIMAGE *YUVimage);

/* Crop an image list */

void CroplmageList(ILIST +list, unsigned int start, unsigned int end);
/= Fast forward an image list */

void FastimageList(ILIST *list, unsigned int factor);

/ * Reverse an image list */

void ReverselmageList(ILIST * list);

The following functions in thélovie.c module:

/ = Allocate the memory space for the movie and the memory space */
[+ for the frame list. Return the pointer to the movie. */
MOVIE * CreateMovie(void);

/ * Release the memory space for the frame list. */
/ = Release the memory space for the movie. */
void DeleteMovie(MOVIE * movie);

/* Convert a YUV movie to a RGB movie * [
void YUV2RGBMovie(MOVIE *movie);

/* Convert a RGB movie to a YUV movie x [
void RGB2YUVMovie(MOVIE +*movie);

15

The following functions in thélovieLab.c module:

/= Load the movie frames from the input file */
MOVIE *LoadMovie(const char *fname, int frameNum,
unsigned int width, unsigned height);

[+ Main function */
int main(int argc, char *argv[]);

The DIP functions in th®IPs.cmodule:

[+ Aging =/
IMAGE * Aging(IMAGE *image);

/ = Horizontal flip */
IMAGE * HFlip(IMAGE *image);

/ = Edge detection */
IMAGE * Edge(IMAGE *image);

/* Add a watermark to an image */
IMAGE * Watermark(IMAGE +*image, const IMAGE *watermark,
unsigned int topLeftX, unsigned int toplLeftY);

[= Spotlight */
IMAGE * Spotlight(IMAGE *image, int centerX, int centerY, unsigned int radius);

/* Zoom an image */
IMAGE *Zoom(IMAGE *image, unsigned int percentage);

You can reuse some function&ding(), HFlip() andEdge() from the previous assignments. Then you need to define
other functions irDIPs.cas well.

5 Budgeting Your Time

You have two weeks to complete this assignment, but we eageuyou to get started early. We suggest you budget
your time as follows:

o Week 1:

1. Build Makefile.

2. CompleteCreatelmageListDeletelmageListAppendRGBImagand AppendYUVImage ImageList.c
andlmageList.h.

. CompleteCreateMovie DeleteMovie YUV2RGBMoviendRGB2YUVMovién Movie.c andMovie.h.
. Completd_oadMoviein MovieLab.c.

g b~ W

. Copy previous DIP function®\ging HFlip andEdge to DIPs.candDIPs.h, and adjust them if necessary.
6. Add the command-line argument support in tain function.

Now you can compile and run yolWlovieLabto test the basic DIP operations, provided that you have ympt
function definitions for all undefined functions. Also, ruouy program irvalgrind to detect any memory leaks
and invalid memory accesses. Fix any problem reporteddhyrind.

16

o Week 2:

1. CompleteReverselmagelisFastimageLisandCroplmageLisin ImageList.candimageList.h.
2. Complete the remaining DIP function&/dtermark SpotlightandZoonj in DIPs.candDIPs.h.

3. UseValgrind to check memory usage. Fix the code/dlgrind complains about any errors or memory
leaks.

4. Script the result of your program and submit your work.

6 Script File

To demonstrate that your program works correctly, perfdrenfollowing steps and submit the log as your script file:

1. Start the script by typing the commarstript

2. CompileMovieLabby using youMakefile

3. Run the progranm MovielLab -h

4. Run the progranf MovieLab -i dive -0 out -f 50 -s 320x240 -aging -hflip

5. Run the program MovieLab -i dive -0 out -f 100 -s 320x240 -edge

6. Run the program MovielLab -i dive -0 out -f 180 -s 320x240 -fast 3 -crop 100-16

7. Run the program MovielLab -i dive -0 out -f 100 -s 320x240 -rvs

8. Run the program% MovielLab -i dive -0 out -f 150 -s 320x240 -watermark watekmander the monitor of
Valgrind

9. Run the program? MovieLab -i dive -0 out -f 150 -s 320x240 -spotlight 10@ler the monitor o¥/algrind
10. (Optional) Run the progrand MovieLab -i dive -0 out -f 100 -s 320x240 -zoom
11. Clean all the object files, output .yuv file and executabtgram by using youMakefile.
12. Stop the script by typing the commarskit.

13. Rename the script file tdovieLab.script
NOTE: The script file is important, and will be checked in grad You must follow the above steps to create the
script file. Again, please do not open any text editor while scripting!!!
7 Submission

Go to the parent directory of yolmw5folder, and turn in your homework by running:
% ~eecs22/bin/turnin.sh

Your hw5folder should contain the following files as the whole paekafiyour program:

MovielLab.c

MovieLab.script

MovieLab.txt

Movie.c

Movie.h

17

e Imagelist.c
e ImagelList.h
e Image.c

e Image.h

e DIPs.c

e DIPs.h

e FilelO.c

e FilelO.h

e Constants.h

o Makefile

Grading

e Makefile (compilable, no warnings and errors): 10 points

e Support for command-line arguments: 15 points

e Struct ImageEntry, ImageList and related functions: 2({oi
e Struct MOVIE and related functions: 10 points

e Watermark operation: 15 points

e Spotlight operation: 15 points

e All other operations and no valgrind errors: 15 points

e Bonus (the Zoom operation): 10 points

18

	MovieLab (100 points)
	Introduction
	Initial Setup
	Design the MovieLab Program
	The Image.c Module (Provided)
	The ImageList.c Module
	The Movie.c Module
	The MovieLab.c Module

	Bonus (10 points)
	Build the Makefile
	Implementation Details
	Structure Definitions
	Function Prototypes

	Budgeting Your Time
	Script File
	Submission
	Grading

