EECS 10: Computational Methods in Electrical and Computer Engineering Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 1.1: Overview

- Introduction
 - Course overview
- Introduction to Computers
 - What is a computer?
 - What is programming?
- Course administration
 - Course web pages

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

2

Introduction

- Course Contents
 - Introduction to computers
 - Introduction to structured programming
 - · C, a high-level structured programming language
 - Binary data representation
 - Introduction to algorithm efficiency
 - Solving engineering problems
 - · Applications of structured programming
 - Hands-on experience
 - · Laboratory and discussion sessions

EECS10: Computational Methods in ECE. Lecture 1

(c) 2016 R. Doemer

3

Introduction to Computers

- What is a computer?
 - Digital device capable of executing programs
 - · performing computations
 - · making logical decisions
- What is a program?
 - Set of instructions which process data
 - input data (e.g. from keyboard, mouse, disk)
 - output data (e.g. to monitor, printer, disk)
- What is programming?
 - Creation of computer programs by use of a programming language

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

4

Introduction to Programming

Categories of programming languages

Machine languages (stream of 1's and 0's)
 Assembly languages (low-level CPU instructions)
 High-level languages (high-level instructions)

Translation of high-level languages

Interpreter (translation for each instruction)
 Compiler (translation once for all code)
 Hybrid (combination of the above)

· Types of programming languages

Functional (e.g. Lisp)

Structured (e.g. Pascal, C, Ada)Object-oriented (e.g. C++, Java, Python)

EECS10: Computational Methods in ECE. Lecture 1

(c) 2016 R. Doemer

5

Course Administration

- Course web pages online at http://eee.uci.edu/16z/18010/
 - Instructor information
 - Course description and contents
 - Course policies and resources
 - Course schedule
 - Homework assignments
 - Course communication
 - · Message board (announcements and technical discussion)
 - Email (administrative issues)

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

6

Lecture 1.2: Overview

- · Getting started
 - Obtain your UCInetID
 - Obtain an account on the EECS servers
 - Log into the server
- · Linux system environment
 - System commands
 - Text editing

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

7

Getting Started

- Obtain your UCInetID
 - Your unique ID at UCI
 - Activation online at OIT (NACS) web pages:

http://activate.uci.edu/activate/menu.html

- Obtain an account on the EECS servers
 - Your working account in EECS
 - Activation online at EECS web pages:

https://newport.eecs.uci.edu/account.py

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

8

Getting Started

- Log into the server
 - Use a terminal with SSH protocol (secure shell)
 - Connect to the EECS Linux server
 - crystalcove.eecs.uci.edu
 - zuma.eecs.uci.edu
 - Authorize yourself with user name and password
- Work in the Linux system environment
 - Linux shell prints command prompt, awaiting input
 - Type in system commands
 echo, date, ls, cat, man, more,
 pwd, mkdir, cd, cp, mv, rm, rmdir
 - Refer to manual pages for help on commands

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

(c) 2016 R. Doemer

9

Linux System Environment

- Linux system commands
 - echo print a message
 - date print the current date and time
 - list the contents of the current directory
 - cat list the contents of files
 - more list the contents of files page by page
 - pwd print the path to the current working directory
 - mkdir create a new directory
 - cd change the current directory
 - ср сору a file

EECS10: Computational Methods in ECE, Lecture 1

- mv rename and/or move a file
 rm remove (delete) a file
 rmdir remove (delete) a directory
- man view manual pages for system commands

Linux System Environment

- Text editing
 - vi standard Unix editor
 - vim vi-improved (supports syntax highlighting)
 - pico easy-to-use text editor
 - emacs very powerful editor
 - many others...
- Pick one editor and make yourself comfortable with it!

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

11

Linux System Environment

Example session (1/4):

```
login as: doemer
Password:
Last login: Mon Oct 1 08:20:09 2007 from beta.eecs.uci.e
If this system is busy, consider a less loaded one below:
vivian.eecs.uci up 30 days, 18:00, load average: 0.00, 0.00, 0.01 malibu.eecs.uci up 2826 days, 21:06, load average: 0.00, 0.00, 0.01 newport.eecs.uc up 23 days, 23:29, load average: 0.00, 0.00, 0.02 east.eecs.uci.e up 12 days, 4:56, load average: 1.46, 1.41, 1.68
Mon Oct 1 08:24:47 PDT 2007
% echo "Hello EECS10!"
Hello EECS10!
% ls
eecs10/
                               Mail/
% pwd
/users/faculty/doemer
% mkdir homework
% ls
eecs10/
                               homework/
                                                              Mail/
```

EECS10: Computational Methods in ECE, Lecture 1 (c) 2016 R. Doemer 12

Linux System Environment Example session (2/4): % cd homework % pwd /users/faculty/doemer/homework % ls % mkdir hwl % ls hw1/ % cd hwl % ls % vi program.c % ls program.c doemer@vivian% ls -1 total 2 1 doemer smmsp 51 Oct 1 08:32 program.c % more program.c This is my new program file. I don't know C yet... EECS10: Computational Methods in ECE, Lecture 1 (c) 2016 R. Doemer

Linux System Environment Example session (3/4): % cp program.c mybackup.c % 1s mybackup.c program.c -rw----- 1 doemer smmsp -rw----- 1 doemer smmsp 51 Oct 1 08:34 mybackup.c 51 Oct 1 08:32 program.c % cd .. /users/faculty/doemer/homework % ls hw1/ % /ecelib/bin/turnin EECS 10 Fall 2007: Assignment "hwl" submission for doemer Due date: Mon Oct 8 11:59:59 2007 EECS10: Computational Methods in ECE, Lecture 1 (c) 2016 R. Doemer

Linux System Environment

• Example session (4/4):

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

15

Lecture 1.3: Overview

- Introduction to Programming in C
 - History of C
 - Introduction to C
- · Our first C Program
 - Example HelloWorld.c
 - Structure of a C program
 - printf() function
 - Program compilation and execution
 - String constants

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

16

Introduction to Programming

Categories of programming languages

Machine languages (stream of 1's and 0's)
 Assembly languages (low-level CPU instructions)
 High-level languages (high-level instructions)

Translation of high-level languages

Interpreter (translation for each instruction)
 Compiler (translation once for all code)
 Hybrid (combination of the above)

Types of programming languages

Functional (e.g. Lisp)

Structured (e.g. Pascal, C, Ada)Object-oriented (e.g. C++, Java, Python)

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

17

History of C

- Evolved from BCPL and B
 - in the 60's and 70's
- Created in 1972 by Dennis Ritchie (Bell Labs)
 - first implementation on DEC PDP-11
 - added concept of typing (and other features)
 - development language of UNIX operating system
- "Traditional" C
 - 1978, "The C Programming Language", by Brian W. Kernighan, Dennis M. Ritchie
 - ported to most platforms
- ANSI C
 - standardized in 1989 by ANSI and OSI
 - standard updated in 1999

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

18

Introduction to C

- What is C?
 - Programming language
 - high-level
 - · structured
 - · compiled
 - Standard library
 - · rich collection of existing functions
- Why C?
 - de-facto standard in software development
 - code is portable to many different platforms
 - supports structured and functional programming
 - easy transition to object-oriented programming
 - C++ / Java
 - freely available for most platforms

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

19

Our first C Program

Program example: Helloworld.c

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

20

Our first C Program

- · Program comments
 - start with /* and end with */
 - are ignored by the compiler
 - should be used to
 - modia bo acca te
 - document the program code
 - · structure the program code
 - · enhance the readability
- #include preprocessor directive
 - inserts a header file into the code
- standard header file <stdio.h>
 - part of the C standard library
 - contains declarations of standard types and functions for data input and output (e.g. function printf())

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

21

Our first C Program

- int main(void)
 - main function of the C program
 - the program execution starts (and ends) here
 - main must return an integer (int) value to the operating system at the end of its execution
 - return value of 0 indicates successful completion
 - return value greater than 0 usually indicates an error condition
- function body
 - block of code
 - (definitions and statements)
 - starts with an opening brace ({)
 - ends with a closing brace ()
- printf() function
 - formatted output (to stdout)
- return statement
 - ends a function and returns its argument as result

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

printf("Hello World!\n");

/* main function */

int main(void)

/* EOF */

return 0;

22

Our first C Program

- Program compilation
 - compiler translates the code into an executable program
 - gcc HelloWorld.c
 - compiler reads file Helloworld.c and creates file a.out
 - options may be specified to direct the compilation
 - -o HelloWorld specifies output file name
 - -ansi -wall specifies ANSI code with all warnings
- Program execution
 - use the generated executable as command
 - HelloWorld
 - the operating system loads the program (loader), then executes its instructions (program execution), and finally resumes when the program has terminated

EECS10: Computational Methods in ECE, Lecture 1

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

(c) 2016 R. Doemer

23

Our first C Program

• Example session: HelloWorld.c

```
% mkdir HelloWorld
% cd HelloWorld
% vi HelloWorld.c
% ls
HelloWorld.c
% ls -1
-rw-r--r-- 1 doemer faculty
                                            263 Sep 28 22:11 HelloWorld.c
% gcc HelloWorld.c
% ls -1
-rw-r--r-- 1 doemer faculty
-rwxr-xr-x 1 doemer faculty
                                            263 Sep 28 22:11 HelloWorld.c
                                          6352 Sep 28 22:12 a.out*
% a.out
Hello World!
% gcc -Wall -ansi HelloWorld.c -o HelloWorld
% ls -1
-rwxr-xr-x 1 doemer faculty 6356 Sep 28 22:17 HelloWorld*
-rw-r--r-- 1 doemer faculty 263 Sep 28 22:17 HelloWorld.c
-rwxr-xr-x 1 doemer faculty 6352 Sep 28 22:12 a.out*
% HelloWorld
Hello World!
```

Our first C Program

- · Character string constants: "Strings"
 - start and end with a double quote character (")
 - may not extend over a single line
 - subsequent string constants are combined
 - text formatting using escape sequences
 - \n new line
 - \t horizontal tab
 - \r carriage return
 - \b back space
 - \a alert / bell
 - \\ backslash character
 - \" double quote character
- Experiments with the Helloworld program...

EECS10: Computational Methods in ECE, Lecture 1

(c) 2016 R. Doemer

25