EECS 10: Computational Methods in Electrical and Computer Engineering Lecture 3

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 3.1: Overview

- Review Quiz
- Comparison of Values
 - Relational Operators
 - Logical Operators
 - Conditional Operator
- Conditional Statements
 - if statement
- Conditional Programming
 - Example Comparison.c

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

2

(c) 2013 R. Doemer

 What is the value of the integer x after the following statement?

x = 3 << 2 >> 1;

- a) Syntax Error!
- b) 3
- c) 6
- d) 12
- e) 321

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

3

Quiz: Question 11

 What is the value of the integer x after the following statement?

x = 3 << 2 >> 1;

- a) Syntax Error!
- b) 3
- c) 6
- d) 12
- e) 321

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

4

(c) 2013 R. Doemer

Which of the following constants is of type double?

(Check all that apply!)

- a) 42
- b) .42
- c) 4e2
- d) 4E2
- e) 42f

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

5

Quiz: Question 12

- Which of the following constants is of type double?
 - (Check all that apply!)
 - a) 42
 - b) .42
 - c) **4e2**
 - d) 4E2
 - e) 42f

- / ----

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

6

(c) 2013 R. Doemer

What is the result type of the following expression?

```
-1 + 2.3f * (4.5 / 67f) - (short)89
```

- a) short int
- b) int
- c) long int
- d) float
- e) double

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

7

Quiz: Question 13

 What is the result type of the following expression?

```
-1 + 2.3f * (4.5 / 67f) - (short)89
```

- a) short int
- b) int
- c) long int
- d) float
- 🛑 e) double

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

8

• What is the value of x after the following code segment?

```
int i = 10;
double d = 0.5;
double x;

x = i/3 + d;
```

- a) 0.333333
- b) 3.0
- c) 3.333333
- d) 3.5
- e) 3.833333

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

Quiz: Question 14

 What is the value of x after the following code segment?

```
int i = 10;
double d = 0.5;
double x;
x = i/3 + d;
```

- a) 0.333333
- b) 3.0
- c) 3.333333

d) 3.5

e) 3.833333

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

10

(c) 2013 R. Doemer

· Given the following code fragment,

```
double x;
double y;
x = (int)(y + 0.5);
```

which of the following statements is true? (Check all that apply!)

- a) for y=5.0, x is set to 5.0
- b) for y=5.1, x is set to 5.0
- c) for y=5.49, x is set to 5.0
- d) for y=5.5, x is set to 6.0
- e) for y=5.95, x is set to 6.0

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

11

Quiz: Question 15

• Given the following code fragment,

```
double x;
double y;
x = (int)(y + 0.5);
```

which of the following statements is true? (Check all that apply!)

- a) for y=5.0, x is set to 5.0
 - b) for y=5.1, x is set to 5.0
 - c) for y=5.49, x is set to 5.0
 - d) for y=5.5, x is set to 6.0
 - e) for y=5.95, x is set to 6.0

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

12

Comparison of Values

- Relational Operators
 - direct comparison of two values
 - Boolean result: truth value, true or false
- Logical Operators
 - Operations on Boolean values
- Conditional Operator
 - Conditional evaluation of expressions

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

12

Relational Operators

- Comparison operations
 - < less than</p>
 - > greater than
 - <= less than or equal to</p>
 - >= greater than or equal to
 - == equal to (remember, = means assignment!)
 - != not equal to
- Comparison is defined for all basic types
 - integer (e.g. 5 < 6)
 - floating point (e.g. 7.0 < 7e1)</pre>
- Result type is Boolean, but represented as integer
 - false
 - true 1 (or any other value not equal to zero)

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

14

Logical Operators

Operation on Boolean/truth values

- ! "not" logical negation- && "and" logical and

• Truth table:

"or"

x	У	!x	ж && у	х у
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

 Argument and result types are Boolean, but represented as integer

false

true1 (or any other value *not* equal to zero)

logical or

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

15

Conditional Operator

- Conditional evaluation of values in expressions
- Question-mark operator:

test ? true-value : false-value

- evaluates the test
- if test is true, then the result is true-value
- otherwise, the result is false-value
- Examples:

-(4 < 5) ? (42) : (4+8) evaluates to 42

-(2==1+2) ? (x) : (y) evaluates to y

-(x < 0)? (-x): (x) evaluates to abs(x)

EECS10: Computational Methods in ECE, Lecture 3

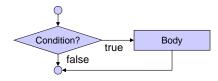
(c) 2013 R. Doemer

16

Operator Evaluation Order

- · Associativity: left to right or right to left
- Precedence: group-wise, top to bottom

parentheses	(,)	n/a
 unary plus, minus, negation 	+, -, !	right to left
type casting	(typename)	right to left
 multiplication, division, modulo 	*, /, %	left to right
 addition, subtraction 	+, -	left to right
shift left, shift right	<<, >>	left to right
relational operators	<, <=, >=, >	left to right
equality	==, !=	left to right
logical and	&&	left to right
logical or	[]	left to right
 conditional operator 	?:	left to right
 assignment operator 	=	right to left


EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

17

Conditional Statements

- if statement
 - Control flow statement for decision making
 - Changes control flow depending on a specified condition
 - Control flow chart:

- Semantics:
 - Body is executed only if the condition evaluates to true

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

18

Conditional Statements

- if statement
 - Control flow statement for decision making
 - Changes control flow depending on a specified condition
 - Example:

- Syntax: if construct consists of
 - Keyword if
 - Condition expression evaluated to true or false
 - Body statement block

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

19

Example Program

Comparison of values: Comparison.c (part 1/3)

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

20

Example Program

• Comparison of values: Comparison.c (part 2/3)

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

21

Example Program

Comparison of values: Comparison.c (part 3/3)

```
if (a > b)
    { printf("%d is greater than %d.\n", a, b);
    } /* fi */
if (a <= b)
    { printf("%d is less than or equal to %d.\n", a, b);
    } /* fi */
if (a >= b)
    { printf("%d is greater than or equal to %d.\n", a, b);
    } /* fi */

/* exit */
    return 0;
} /* end of main */
```

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

22

Example Program

• Example session: Comparison.c

```
% gcc -Wall -ansi Comparison.c -o Comparison
% Comparison
Please enter a value for integer a: 42
Please enter a value for integer b: 56
42 is not equal to 56.
42 is less than 56.
42 is less than or equal to 56.
% Comparison
Please enter a value for integer a: 6
Please enter a value for integer b: 6
6 is equal to 6.
6 is less than or equal to 6.
6 is greater than or equal to 6.
% Comparison
Please enter a value for integer a: 77
Please enter a value for integer b: 6
77 is not equal to 6.
```

EECS10: Computational Methods in ECE, Lecture 3

(c) 2013 R. Doemer

23